算法实践:基于鸢尾花(iris)数据集逻辑回归分类实践(day03)

import numpy as  np  #numpy (Python进行科学计算的基础软件包)
import pandas as pd  #pandas(pandas是一种快速,强大,灵活且易于使用的开源数据分析和处理工具)
import matplotlib.pyplot as plt  #绘图工具
import seaborn  as  sns  #绘图
from sklearn.datasets  import load_iris  #导入sklearn 中的鸢尾花数据模块
data=load_iris() #获取sklearn 中的鸢尾花数据
iris_target=data.target  #获取鸢尾花数据标签
iris_features=pd.DataFrame(data=data.data,columns=data.feature_names) #将鸢尾花特征数据使用pandas转化为DataFrame格式
iris_features.info()  #查看数据整体信息
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 4 columns):
sepal length (cm)    150 non-null float64
sepal width (cm)     150 non-null float64
petal length (cm)    150 non-null float64
petal width (cm)     150 non-null float64
dtypes: float64(4)
memory usage: 4.8 KB
iris_features.head()  #对鸢尾花特征数据的头部进行查看
sepal length (cm)sepal width (cm)petal length (cm)petal width (cm)
05.13.51.40.2
14.93.01.40.2
24.73.21.30.2
34.63.11.50.2
45.03.61.40.2
iris_features.tail() #对鸢尾花特征数据的尾部进行查看
sepal length (cm)sepal width (cm)petal length (cm)petal width (cm)
1456.73.05.22.3
1466.32.55.01.9
1476.53.05.22.0
1486.23.45.42.3
1495.93.05.11.8
iris_target  #鸢尾花数据的标签
import numpy as  np  #numpy (Python进行科学计算的基础软件包)
import pandas as pd  #pandas(pandas是一种快速,强大,灵活且易于使用的开源数据分析和处理工具)
import matplotlib.pyplot as plt  #绘图工具
import seaborn  as  sns  #绘图
from sklearn.datasets  import load_iris  #导入sklearn 中的鸢尾花数据模块
data=load_iris() #获取sklearn 中的鸢尾花数据
iris_target=data.target  #获取鸢尾花数据标签
iris_features=pd.DataFrame(data=data.data,columns=data.feature_names) #将鸢尾花特征数据使用pandas转化为DataFrame格式
iris_features.info()  #查看数据整体信息
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 4 columns):
sepal length (cm)    150 non-null float64
sepal width (cm)     150 non-null float64
petal length (cm)    150 non-null float64
petal width (cm)     150 non-null float64
dtypes: float64(4)
memory usage: 4.8 KB
iris_features.head()  #对鸢尾花特征数据的头部进行查看
sepal length (cm)sepal width (cm)petal length (cm)petal width (cm)
05.13.51.40.2
14.93.01.40.2
24.73.21.30.2
34.63.11.50.2
45.03.61.40.2
iris_features.tail() #对鸢尾花特征数据的尾部进行查看
sepal length (cm)sepal width (cm)petal length (cm)petal width (cm)
1456.73.05.22.3
1466.32.55.01.9
1476.53.05.22.0
1486.23.45.42.3
1495.93.05.11.8
iris_target  #鸢尾花数据的标签
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
       2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
       2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])
pd.Series(iris_target).value_counts()  #
2    50
1    50
0    50
dtype: int64
iris_features.describe()  #鸢尾花数据特征进行统计描述
sepal length (cm)sepal width (cm)petal length (cm)petal width (cm)
count150.000000150.000000150.000000150.000000
mean5.8433333.0540003.7586671.198667
std0.8280660.4335941.7644200.763161
min4.3000002.0000001.0000000.100000
25%5.1000002.8000001.6000000.300000
50%5.8000003.0000004.3500001.300000
75%6.4000003.3000005.1000001.800000
max7.9000004.4000006.9000002.500000
iris_all = iris_features.copy()  #拷贝特征数据
iris_all['target'] = iris_target  #合并标签数据
#Seaborn是基于matplotlib的Python数据可视化库。它提供了用于绘制引人入胜且内容丰富的统计图形的高级界面
sns.pairplot(data=iris_all, diag_kind='hist') #, hue='target'  特征与标签组合的散点图可视化 
plt.show()

在这里插入图片描述

## 绘制箱型图
for col in iris_features.columns:
    sns.boxplot(x='target', y=col, saturation=0.5,palette='pastel', data=iris_all)
    plt.title(col)
    plt.show()
```![在这里插入图片描述](https://img-blog.csdnimg.cn/20201218104853422.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2h1dHVndWkyMDA5,size_16,color_FFFFFF,t_70#pic_center)
![在这里插入图片描述](https://img-blog.csdnimg.cn/20201218104907946.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2h1dHVndWkyMDA5,size_16,color_FFFFFF,t_70#pic_center)
![在这里插入图片描述](https://img-blog.csdnimg.cn/20201218104918897.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2h1dHVndWkyMDA5,size_16,color_FFFFFF,t_70#pic_center)

![在这里插入图片描述](https://img-blog.csdnimg.cn/20201218104929371.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2h1dHVndWkyMDA5,size_16,color_FFFFFF,t_70#pic_center)

```python
# 选取其前三个特征绘制三维散点图
from mpl_toolkits.mplot3d import Axes3D

fig = plt.figure(figsize=(10,8))
ax = fig.add_subplot(111, projection='3d')

iris_all_class0 = iris_all[iris_all['target']==0].values
iris_all_class1 = iris_all[iris_all['target']==1].values
iris_all_class2 = iris_all[iris_all['target']==2].values
# 'setosa'(0), 'versicolor'(1), 'virginica'(2)
ax.scatter(iris_all_class0[:,0], iris_all_class0[:,1], iris_all_class0[:,2],label='setosa')
ax.scatter(iris_all_class1[:,0], iris_all_class1[:,1], iris_all_class1[:,2],label='versicolor')
ax.scatter(iris_all_class2[:,0], iris_all_class2[:,1], iris_all_class2[:,2],label='virginica')
plt.legend()
plt.show()

在这里插入图片描述

## 为了正确评估模型性能,将数据划分为训练集和测试集,并在训练集上训练模型,在测试集上验证模型性能。
from sklearn.model_selection import train_test_split

## 选择其类别为0和1的样本 (不包括类别为2的样本)
iris_features_part = iris_features.iloc[:100]
iris_target_part = iris_target[:100]

## 测试集大小为20%, 80%/20%分
x_train, x_test, y_train, y_test = train_test_split(iris_features_part, iris_target_part, test_size = 0.2, random_state = 2020)
## 从sklearn中导入逻辑回归模型
from sklearn.linear_model import LogisticRegression
## 定义 逻辑回归模型 
clf = LogisticRegression(random_state=0, solver='lbfgs')
# 在训练集上训练逻辑回归模型
clf.fit(x_train, y_train)
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,
          penalty='l2', random_state=0, solver='lbfgs', tol=0.0001,
          verbose=0, warm_start=False)
## 查看其对应的w
print('the weight of Logistic Regression:',clf.coef_)

## 查看其对应的w0
print('the intercept(w0) of Logistic Regression:',clf.intercept_)
the weight of Logistic Regression: [[ 0.45244919 -0.81010583  2.14700385  0.90450733]]
the intercept(w0) of Logistic Regression: [-6.57504448]
## 在训练集和测试集上分布利用训练好的模型进行预测
train_predict = clf.predict(x_train)
test_predict = clf.predict(x_test)
from sklearn import metrics

## 利用accuracy(准确度)【预测正确的样本数目占总预测样本数目的比例】评估模型效果
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_train,train_predict))
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_test,test_predict))

## 查看混淆矩阵 (预测值和真实值的各类情况统计矩阵)
confusion_matrix_result = metrics.confusion_matrix(test_predict,y_test)
print('The confusion matrix result:\n',confusion_matrix_result)

# 利用热力图对于结果进行可视化
plt.figure(figsize=(8, 6))
sns.heatmap(confusion_matrix_result, annot=True, cmap='Blues')
plt.xlabel('Predicted labels')
plt.ylabel('True labels')
plt.show()
The accuracy of the Logistic Regression is: 1.0
The accuracy of the Logistic Regression is: 1.0
The confusion matrix result:
 [[ 9  0]
 [ 0 11]]

在这里插入图片描述

## 测试集大小为20%, 80%/20%分
x_train, x_test, y_train, y_test = train_test_split(iris_features, iris_target, test_size = 0.2, random_state = 2020)
## 定义 逻辑回归模型 
clf = LogisticRegression(random_state=0, solver='lbfgs')
# 在训练集上训练逻辑回归模型
clf.fit(x_train, y_train)
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,
          penalty='l2', random_state=0, solver='lbfgs', tol=0.0001,
          verbose=0, warm_start=False)
## 查看其对应的w
print('the weight of Logistic Regression:\n',clf.coef_)

## 查看其对应的w0
print('the intercept(w0) of Logistic Regression:\n',clf.intercept_)

## 由于这个是3分类,所有我们这里得到了三个逻辑回归模型的参数,其三个逻辑回归组合起来即可实现三分类。
the weight of Logistic Regression:
 [[-0.43538857  0.87888013 -2.19176678 -0.94642091]
 [-0.39434234 -2.6460985   0.76204684 -1.35386989]
 [-0.00806312  0.11304846  2.52974343  2.3509289 ]]
the intercept(w0) of Logistic Regression:
 [  6.30620875   8.25761672 -16.63629247]
## 在训练集和测试集上分布利用训练好的模型进行预测
train_predict = clf.predict(x_train)
test_predict = clf.predict(x_test)

## 由于逻辑回归模型是概率预测模型(前文介绍的 p = p(y=1|x,\theta)),所有我们可以利用 predict_proba 函数预测其概率
train_predict_proba = clf.predict_proba(x_train)
test_predict_proba = clf.predict_proba(x_test)

print('The test predict Probability of each class:\n',test_predict_proba)
## 其中第一列代表预测为0类的概率,第二列代表预测为1类的概率,第三列代表预测为2类的概率。

## 利用accuracy(准确度)【预测正确的样本数目占总预测样本数目的比例】评估模型效果
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_train,train_predict))
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_test,test_predict))
The test predict Probability of each class:
 [[1.32525870e-04 2.41745142e-01 7.58122332e-01]
 [7.02970475e-01 2.97026349e-01 3.17667822e-06]
 [3.37367886e-02 7.25313901e-01 2.40949311e-01]
 [5.66207138e-03 6.53245545e-01 3.41092383e-01]
 [1.06817066e-02 6.72928600e-01 3.16389693e-01]
 [8.98402870e-04 6.64470713e-01 3.34630884e-01]
 [4.06382037e-04 3.86192249e-01 6.13401369e-01]
 [1.26979439e-01 8.69440588e-01 3.57997319e-03]
 [8.75544317e-01 1.24437252e-01 1.84312617e-05]
 [9.11209514e-01 8.87814689e-02 9.01671605e-06]
 [3.86067682e-04 3.06912689e-01 6.92701243e-01]
 [6.23261939e-03 7.19220636e-01 2.74546745e-01]
 [8.90760124e-01 1.09235653e-01 4.22292409e-06]
 [2.32339490e-03 4.47236837e-01 5.50439768e-01]
 [8.59945211e-04 4.22804376e-01 5.76335679e-01]
 [9.24814068e-01 7.51814638e-02 4.46852786e-06]
 [2.01307999e-02 9.35166320e-01 4.47028801e-02]
 [1.71215635e-02 5.07246971e-01 4.75631465e-01]
 [1.83964097e-04 3.17849048e-01 6.81966988e-01]
 [5.69461042e-01 4.30536566e-01 2.39269631e-06]
 [8.26025475e-01 1.73971556e-01 2.96936737e-06]
 [3.05327704e-04 5.15880492e-01 4.83814180e-01]
 [4.69978972e-03 2.90561777e-01 7.04738434e-01]
 [8.61077168e-01 1.38915993e-01 6.83858427e-06]
 [6.99887637e-04 2.48614010e-01 7.50686102e-01]
 [5.33421842e-02 8.31557126e-01 1.15100690e-01]
 [2.34973018e-02 3.54915328e-01 6.21587370e-01]
 [1.63311193e-03 3.48301765e-01 6.50065123e-01]
 [7.72156866e-01 2.27838662e-01 4.47157219e-06]
 [9.30816593e-01 6.91640361e-02 1.93708074e-05]]
The accuracy of the Logistic Regression is: 0.9583333333333334
The accuracy of the Logistic Regression is: 0.8
## 查看混淆矩阵
confusion_matrix_result = metrics.confusion_matrix(test_predict,y_test)
print('The confusion matrix result:\n',confusion_matrix_result)

# 利用热力图对于结果进行可视化
plt.figure(figsize=(8, 6))
sns.heatmap(confusion_matrix_result, annot=True, cmap='Blues')
plt.xlabel('Predicted labels')
plt.ylabel('True labels')
plt.show()
The confusion matrix result:
 [[10  0  0]
 [ 0  7  3]
 [ 0  3  7]]

在这里插入图片描述

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值