- 博客(10)
- 收藏
- 关注
原创 深度学习笔记_7.2_Bert实战
对于embedding层来说,分别是linear(21128,768),linear(2,768),linear(512,768),然后是bert layers,多头注意力那里是3个linear(768,768),然后是残差归一化,也是linear(768,768),然后是多层感知机(mlp)/ 前馈神经网络(FFN),分别是linear(768,768*4),linear(768*4,768),然后是pooler output 是1个768,然后是分类头,这些加起来就是参数。开头是cls,结尾是sep。
2025-03-10 14:16:18
408
原创 深度学习笔记_7.1_自然语言处理与Bert
2025/3/8 20:24于图书馆一楼296号位。前文中我们学习了分类,特征,自监督与无监督,今天我们来讲自然语言处理(NLP)。首先自然而言的,我们怎么用数据来表示文字呢,怎么让模型知道我们输入的是一个“我”字呢,怎么让模型知道“我”字所表达的意思呢。首先可以想到,用一个向量来表示一句话,也就是独热编码,如上图所示,让位置来表示汉字,哪一个位置表示哪一个汉字,这个位置是1,就表示这句话有这个字,但是有很大的缺点,太长了,而且不表示含义。
2025-03-09 18:10:34
594
原创 深度学习笔记_6.1深度学习与特征
还有一种方法,我们可以把一张图的黑白版本当作x,彩色版本,当作y, 给一张黑白图片,让还原出彩色图片长什么样子,这样情况下也能让模型学习特征提取的能力,如果模型没有特征提取的能力,模型怎么能知道,这玩意应该是什么颜色呢,如上图,下面就是这个模型的架构,就是卷卷卷卷卷卷卷,没别的。如图,假如我用梵高的《星月夜》,放进编码器里面,可以提取出梵高的画风,然后用我现场拍的房子图片,提取出房子的排布,形状,分离出来,然后一结合,就有了梵高画风的房子。chatgpt里面的p就是预训练,g和t以后讲。
2025-03-07 21:07:07
641
原创 深度学习笔记_5.1图像分类实战_食物分类_代码详解
第四章中我们讲了分类的模型原理和卷积神经网络,第五章我们上实战项目,搞定一个食物分类。首先安装cv2库,timm库,中间省略(记得退梯子,挂梯子安不上)下面是所需的库。
2025-03-06 17:21:47
664
原创 深度学习笔记_2.1训练集,验证集和测试集的区别
验证集:你在培养了一段时间这些学生(模型)之后,他们都有了或高或低的算法能力,然后期末测试,你把验证集放到oj,限时模拟acm来测试他们的水平,最后根据期末分数,你挑选出几个水平最高的学生(模型)组成队伍,去acm现场打比赛。打个比方,你是一名acm集训老师,你手里有许多算法题(样本数据)你把这些算法题随机划分成训练集,验证集,测试集,你带的有一个班30个想去打acm的大学生 ,他们的基础为0,但是有不同的天赋。2025/3/6 10:15于图书馆一楼77号位。测试集:就是acm现场赛。
2025-03-06 10:24:36
204
原创 深度学习笔记_4.2AlexNet与ResNet
(0)Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2)):这玩意就是一层卷积,有5个参数,分别是输入特征图数量、输出特征图数量、卷积核大小、步长、padding。如上图所示,左右两边是一样的效果,但是右边只用了一个3*3的卷积核,卷了两次,左边5*5=25个参数量,右边3*3=9个参数量。,这里的pool(3,2)意思是,3*3个格子pool一次,每次走2步,然后经过第二个卷积。说人话,就是在每一次的x之后,使其加上f(x)
2025-03-05 14:26:12
370
原创 深度学习笔记_4.1卷积神经网络详解
在深度学习界有两把神器,一把是linear,另一把是卷积,前文中我们学到了第一把,今天学第二把:卷积,深度学习界基本上都是靠这两个完成的,要么就是他们的变体。如果从数据领域来看,回归和分类的区别基本上就在这里:回归就是找一条线,预测数据走向,模拟已有的数据分布,分类相当于找一条分界线,用于把这两个类别分开来的线。分类和回归,流程上没有任何区别,取数据,做模型,训练流程也没有分别,唯一的区别是模型,模型的输入不再是一组向量,而是一个图片,输出也不再是一个值,而是一个类别。
2025-03-05 10:43:00
1553
原创 深度学习笔记_3.1回归
模型也是通过类实现,包括两个重要方法init(初始化)和forward(前向):init(初始化):即搭建模型框架;forward(前向):规定数据如何通过模型此处定义我的模型继承于nn库的Module类,是 PyTorch 中所有神经网络模块的基类def __init__(self,InDim):#此处对我们的模型进行初始化,因为模型的输出维度为1,也就是输出一个数,故无需定义,输入维度定为InDimself.fc1=nn.Linear(InDim,64)#此处定义第一层的输入和输出维度。
2025-03-04 10:36:51
924
原创 3.2模型优化升级
主要是用于降维,用线性变换将原始的高维数据转换为一组新的、相互正交的低维特征向量,这些新的特征向量被称为主成分,其核心思想是找到数据中方差最大的方向,将数据投影到这些方向上,使得投影后的数据能够尽可能地保留原始数据的信息,同时实现数据维度的降低。首先,我们通过一系列的x,选取一个大致的模型,计算得到的预测值y‘,然后计算出这个x对应的真实值y与预测y’的差loss,去反调整模型,不断的训练模型使其不断接近真实的自然规则。左边3,右边4,则w=3*4=12,b=4(右边的数量),则总参数为12+4=16个。
2025-03-03 17:41:32
1156
原创 校园网连接后,浏览器打不开登录界面可能的一种解决方法
如图为edge浏览器,昨天校园网还是能正常连接并弹出登录界面,但是今天校园网连接后,打开edge浏览器却始终弹不出登录界面,就算打开收藏夹里登录界面的网址也一直转圈圈,但是手机却可以正常弹出并连接,然而在尝试网上说的各种改ip和dns的方法后,也没有效果。那么有没有一种可能,你的情况和我一样,是昨天晚上用浏览器的vpn插件没有关。...
2022-04-15 13:08:41
13225
17
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅