基础算法--动态规划

基础算法–动态规划

动态规划时运筹学的一个分支,是求解决策过程最优化的数学方法。

基本思想

动态规划算法通常用于求解具有某种最优性质的问题。在这类问题中,可能有很多可行解。每一个解都对应于一个值,我们希望找到最优值的解。动态规划算法与分治算法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解中的到原问题的解。与分治法不同是,适合于动态规划求解的问题,经分解的到子问题往往是不相互独立的。若用分治法来解这类问题,则分解的到的子问题数量太大,有些问题被重复计算了很多次。如果我们能保存已解决的子问题的解,而在需要时再找出以求得的解,这样就可以避免大量重复计算,节省时间。我们可以使用一张表来记录所有子问题的答案。不管该子问题以后是否被用到,只要它被计算过,就将其解填入表中。这就是动态规划的基本思路

适用条件

适用动态规划的问题需要满足下面三个条件

  • 最优子结构
    • 一个最优化策略的子策略总是最优的
  • 无后向性
    • 将各个阶段按照一定的次序排列好之后,对于某个给定的阶段状态,它以前各个阶段的状态无法直接影响它未来的决策。通俗一点解释就是,每个状态都是过去历史的一个完整总结
  • 子问题的重叠性
    • 动态规划将原来具有子数级复杂度的搜索算法改进成了具有多项式时间的算法,其关键在于解决重复计算,这也是动态规划的根本目的

动态规划本质上是一种以空间换时间的做法,它在实现过程中,不得不存储过程中产生的各种状态,所以它的空间复杂度相对高一些

解决问题步骤

  • 划分子问题:按照问题特征,把问题分为若干个阶段。注意:划分的阶段一定是有序或者可排序
  • 确定状态和状态变量:将问题发展到各个不同阶段时所处的各种不同的客观情况表现出来。状态的选择要满足无后续性
  • 确定决策并写出状态转移方程:状态转移就是根据上一阶段状态来决策出本阶段的状态。根据相邻两个阶段状态之间的联系来确定决策方法和状态转移方程
  • 边界条件:状态转移方程是一个递推式,因此需要找到递推终止的条件

案例

上台阶问题

有一只青蛙上台阶,它每次可以选择上 1 , 2 , 3 1,2,3 1,2,3台阶。问青蛙上到第 n n n阶有多少中上法?

想要上到第 n n n阶台阶,那么青蛙只能从 n − 1 , n − 2 , n − 3 n-1,n-2,n-3 n1,n2,n3三个台阶到第 n n n阶台阶 ( n ≥ 0 ) (n \geq 0) (n0),因此我们可以写出状态转移方程,假设 F ( n ) F(n) F(n)表示上到第 n n n阶台阶的方法

F ( n ) = { 1 n = 0 1 n = 1 2 n = 2 F ( n − 1 ) + F ( n − 2 ) + F ( n − 3 ) n ≥ 3 F(n)=\begin{cases} 1 \quad n = 0\\ 1 \quad n = 1\\ 2 \quad n = 2\\ F(n-1) + F(n-2) + F(n-3) \quad n \geq 3\\ \end{cases} F(n)= 1n=01n=12n=2F(n1)+F(n2)+F(n3)n3

int step(int n) {
    std::vector<int> dp(n + 1, 0);
    dp[0] = 1;
    dp[1] = 1;
    dp[2] = 2;
    for (int i = 3; i < n + 1; ++i) {
        dp[i] = dp[i - 1] + dp[i - 2] + dp[i - 3];
    }
    return dp[n];
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

虎小黑

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值