高等数学题目

本文通过单调有界原理证明了一个数列的极限存在,并求出了该极限的具体值。首先证明了数列的单调递增性质,接着证明了其有界性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


第2道题目的解法应该是:用单调有界性来证明



证明:(i)由题得,an>=1
an+1^2-an^2=(1+an)-(1+an-1)=an-an-1
所以只要an>an-1,就有an+1>an
而a2=√2 >a1.则由数学归纳法,an为单调递增数列。
(ii)由题及(i)得an+1=(1+an)/an+1<(1+an+1)/an+1
=1+1/an+1<2.则an为有界数列。
由(i)(ii)知an极限存在
当n→∞时,设an=an+1=x
则由an+1=√(1+an)得,x=√(1+x)
解得,极限x=(1+√5)/2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值