
线性代数
文章平均质量分 71
线性代数
Risehuxyc
雄关漫道真如铁,而今迈步从头越。
展开
-
逆矩阵、秩
如果存在一个矩阵B,使得AB = BA = I(I是单位矩阵),那么我们称A是可逆的,B是A的逆矩阵。逆矩阵是线性代数中的明星概念,它代表了一种独特的矩阵操作,允许我们逆转一个矩阵所代表的线性变换。当我们谈论线性变换时,我们指的是一个函数,它将向量空间中的每个向量映射到另一个向量。本文将深入探讨线性代数中的几个核心概念:逆矩阵、秩、列空间和零空间,通过详细的解释和丰富的实例,揭示它们背后的数学原理和应用。秩的定义是矩阵列空间的维数,即列向量所能张成的空间的维度。所以,矩阵B的秩为1。原创 2024-07-30 12:02:53 · 687 阅读 · 0 评论 -
求逆矩阵的三种方法
逆矩阵是线性代数中非常重要的的一个概念,先来看看什么是逆矩阵?设A是数域上的一个n阶矩阵,若在相同数域上存在另一个n阶矩阵B,使得:ABBAE,则我们称B是A的逆矩阵,而A则被称为可逆矩阵。注:E为单位矩阵。(该段文字来自于百度百科)接下来以三阶矩阵为例,如下题待定系数法顾名思义是一种求未知数的方法。将一个多项式表示成另一种含有待定系数的新的形式,这样就得到一个恒等式。转载 2024-07-08 10:15:27 · 26245 阅读 · 0 评论