题目大意:就是让你求出满足所给式子的值是多少。
算法思路:其实我们可以将这个式子化简一下,化简成为sum(a[i]*a[i] ,i=0....n-1)+sum(b[i]*b[i] ,i=0...n-1)-2*max(sum(a[i]*b[j]),i=0...n-1,j=0...n-1)。
#include <iostream>
#include<cstring>
#include<cstdio>
using namespace std;
#define MAXN 300000
typedef long long LL;
const long long P=50000000001507329LL;
const int G=3;
LL mul(LL x,LL y){
return (x*y-(LL)(x/(long double)P*y+1e-3)*P+P)%P;
}
LL qpow(LL x,LL k,LL p){
LL ret=1;
while(k){
if(k&1) ret=mul(ret,x);
k>>=1;
x=mul(x,x);
}
return ret;
}
LL wn[25];
void getwn(){
for(int i=1; i<=18; ++i){
int t=1<<i;
wn[i]=qpow(G,(P-1)/t,P);
}
}
int len;
void NTT(LL y[],int op){
for(int i=1,j=len>>1,k; i<len-1; ++i){
if(i<j) swap(y[i],y[j]);
k=len>>1;
while(j>=k){
j-=k;
k>>=1;
}
if(j<k) j+=k;
}
int id=0;
for(int h=2; h<=len; h<<=1) {
++id;
for(int i=0; i<len; i+=h){
LL w=1;
for(int j=i; j<i+(h>>1); ++j){
LL u=y[j],t=mul(y[j+h/2],w);
y[j]=u+t;
if(y[j]>=P) y[j]-=P;
y[j+h/2]=u-t+P;
if(y[j+h/2]>=P) y[j+h/2]-=P;
w=mul(w,wn[id]);
}
}
}
if(op==-1){
for(int i=1; i<len/2; ++i) swap(y[i],y[len-i]);
LL inv=qpow(len,P-2,P);
for(int i=0; i<len; ++i) y[i]=mul(y[i],inv);
}
}
void Convolution(LL A[],LL B[],int n){
for(len=1; len<(n<<1); len<<=1);
for(int i=n; i<len; ++i){
A[i]=B[i]=0;
}
NTT(A,1); NTT(B,1);
for(int i=0; i<len; ++i){
A[i]=mul(A[i],B[i]);
}
NTT(A,-1);
}
int t,nn,m;
LL a[MAXN],b[MAXN];
LL ans,MAX;
int main()
{
getwn();
scanf("%d",&t);
while(t--)
{
MAX=0;
ans=0;
scanf("%d",&nn);
for(int i=0;i<nn;i++)
{
scanf("%lld",&a[i]);
ans+=a[i]*a[i];
}
for(int i=0;i<nn;i++)
{
scanf("%lld",&b[nn-i-1]);
ans+=b[nn-i-1]*b[nn-i-1];
}
for(int i=0;i<nn;i++)
{
a[i+nn]=a[i];
b[i+nn]=0;
}
Convolution(a,b,2*nn);
for(int i=nn;i<2*nn;i++)
{
MAX=max(MAX,a[i]);
}
printf("%lld\n",ans-2*MAX);
}
return 0;
}