板块1人工智能概论与发展+云计算与边缘计算+人工智能与物联网
一、选择题 共 35 题 毎题2.86分 共100分
【 B 】 1.腾讯文档属于哪种类型的服务?
-
- (A) PaaS
- (B) SaaS
- (C) IaaS
- (D) HaaS
解析
腾讯文档属于SaaS服务类型,提供基于网络的应用程序服务。
【 D 】 2.以下哪一项是PaaS的核心特性?
-
- (A) 存储大量数据
- (B) 提供现成应用程序
- (C) 替代终端设备
- (D) 为开发者提供开发平台
解析
PaaS专为开发者提供开发环境,简化应用程序开发流程。
【 A 】 3.Lisp语言作为最早的人工智能语言,其特点不包括以下哪一项?
-
- (A) 以叙述句及上下层级观念为主
- (B) 以链表为基本数据结构
- (C) 程序与资料使用同一种表示方式
- (D) 使用垃圾回收(garbage collection)作为内存管理方式
解析
Lisp语言的核心特性包括同像性(代码即数据)、自动内存管理和链表数据结构,而"叙述句及层级观念"是逻辑编程语言的特征,与Lisp的函数式编程范式不符。Lisp通过函数组合和递归实现算法,而非基于逻辑断言。
【 C 】 4.分布式计算技术的主要目的是什么?
-
- (A) 增加数据安全性
- (B) 存储数据存储在单一服务器
- (C) 整合多个计算资源进行共同运算
- (D) 减少设备使用量
解析
分布式计算通过 整合多个资源分担计算负担,提升效能。
【 A 】 5.云计算的核心概念是什么?
-
- (A) 资源的分布式管理与运算
- (B) 硬件设施优化
- (C) 本地数据存储
- (D) 减少网络使用量
解析
云计算的核心是利用分布式存储架构,将资源分散在服务器间进行管理与运算。
【 D 】 6.5G技术的哪个特性与云计算高度相关?
-
- (A) 单向通信
- (B) 广覆盖
- (C) 低功耗
- (D) 高速率
解析
5G的高速率特性大幅提升了云计算的使用效率。
【 D 】 7.以下哪一层是物联网架构中的数据传输核心?
-
- (A) 感知层
- (B) 应用层
- (C) 数据层
- (D) 网络层
解析
网络层负责传输感知层收集的数据到应用层。
【 B 】 8.以下关于文心一言的说法,正确的是?
-
- (A) 只能进行简单的文本翻译
- (B) 可以根据输入的问题自动生成答案,并具有编写和除错计算机程序的能力
- (C) 不具备学习能力
- (D) 是一种硬件设备
解析
文心一言是百度开发的生成式人工智能模型,具备复杂任务处理能力
【 D 】 9.下列哪项不是弱人工智能的特点?
-
- (A) 如银行迎宾机器人、语音识别等均属于弱人工智能
- (B) 只能模仿人类处理特定问题的模式
- (C) 不具意识、不理解动作本身的意义
- (D) 能够进行深度思考或推理
解析
弱人工智能只能模仿人类处理特定问题的模式,不能深度进行思考或推理,不具意识、不理解动作本身的意义,银行迎宾机器人、语音识别等都属于弱人工智能。
【 C 】 10.人工智能在环境保护中,对于自然资源与能源管理的作用不包括?
-
- (A) 分析能源需求和使用模式,实现智慧电网管理
- (B) 提高对气候变迁和灾害等事件的预测能力
- (C) 模拟未来天气和气候变化
- (D) 监测水资源的使用和污染情况,提供节水方案
解析
模拟未来天气和气候变化属于人工智能在环境保护中对气候数据的分析应用,而非自然资源与能源管理方面的作用。
【 B 】 11.以下哪一项是边缘计算的应用范畴?
-
- (A) 文档存储
- (B) 自动驾驶技术
- (C) 音乐分享
- (D) 联系人同步
解析
边缘计算的低延迟特性使其在自动驾驶等实时性要求高的应用中表现出色。
【 A 】 12.物联网的应用范围不包括以下哪一项?
-
- (A) 游戏设计
- (B) 智能交通
- (C) 智能家居
- (D) 智能城市
解析
物联网主要聚焦于实体物体的连接和管理,游戏设计不在其应用范围。
【 A 】 13.人工智能的概念最早是由哪位科学家提出的?
-
- (A) 约翰・麦卡锡(John McCarthy)
- (B) 卢卡斯(Lucas)
- (C) 艾伦・图灵(Alan Turing)
- (D) 戈登・摩尔(Gordon Mores)
解析
文章中明确提到人工智能的概念最早是由美国科学家John McCarthy于1955年提出。
【 A 】 14.以下哪一项是云计算的主要优点?
-
- (A) 提高计算效率并降低成本
- (B) 不依赖网络连接
- (C) 完全取代终端设备
- (D) 提供免费硬件
解析
云计算能够提高计算效率并降低成本,并将运算资源集中管理。
【 B 】 15.边缘计算的主要目的是什么?
-
- (A) 替代虚拟化技术
- (B) 减少延迟并提升实时性
- (C) 增强云计算能力
- (D) 降低数据处理成本
解析
边缘计算通过缩短数据生成点与运算点的距离来减少延迟。
【 B 】 16.下列哪项不是GPU的特点?
-
- (A) 以矢量和矩阵运算为基础
- (B) 主要用于图形渲染,不能进行其他运算
- (C) 能有效处理并行处理的计算任务
- (D) 集成数千个高效能运算核心
解析
GPU含有数千个小型且高效率的CPU,以矢量和矩阵运算为基础,能有效处理并行计算,并且可以达到高效能运算。而辉达的GPU及CUDA已被大量地导入各行各业,说明GPU不仅能用于游戏中的3D图形处理,也可用于进行其他运算。
【 A 】 17.百度网盘相册使用的AI技术能够进行什么操作?
-
- (A) 智能修图与调整滤镜
- (B) 分析文件使用频率
- (C) 增加存储空间
- (D) 设定使用者喜好
解析
百度网盘相册内置AI功能,能智能调节亮度、滤镜等相片细节。
【 D 】 18.混合云的主要特点是什么?
-
- (A) 不需要网络连接
- (B) 无需管理硬件资源
- (C) 只适用于个人设备
- (D) 结合多种云端架构
解析
混合云将私有云、公有云或社区云结合起来,兼具各架构的优点。
【 D 】 19.增强现实(AR)的特点是?
-
- (A) 虚拟内容与现实空间没有互动
- (B) 主要用于游戏开发,在其他领域没有应用
- (C) 用虚拟内容完全取代现实空间
- (D) 通过摄影机影像的位置及角度计算,在屏幕上让真实环境中加入虚拟画面,并能实时互动
解析
对增强现实(AR)的定义为一种将虚拟影像与现实空间互动的技术,能够把虚拟内容叠加在实体世界上,并让两者实时互动,通过摄影机影像的位置及角度计算,在屏幕上让真实环境中加入虚拟画面。
【 C 】
20.强人工智能(Strong AI)目前的发展状况是?
-
- (A) 已经广泛应用于各个领域
- (B) 主要存在于科幻作品中 ※正确答案
- (C) 仅在理论研究阶段,尚无实际进展 ※您的答案
- (D) 已经实现并超越了人类智能
解析
文中提到强人工智能的定义是拥有类似人类的认知能力,可以自主学习、推理、解决问题,并灵活应对不同场景和任务的人工智能系统,目前主要出现在科幻作品中,还没有成为科学现实。
【 A 】 21.智能家电的主要特点是什么?
-
- (A) 自主学习和互联互通
- (B) 低成本制造
- (C) 仅适用于家用设备
- (D) 高效节能
解析
智能家电可以学习使用者行为并进行自动化控制。
【 C 】 22.以下关于人工智能面临的挑战,说法错误的是?
-
- (A) 隐私权挑战主要涉及数据安全和个人隐私保护
- (B) 著作权挑战涉及生成式AI作品的著作权评估
- (C) 社会挑战仅包括对劳动力市场的影响
- (D) 技术上模型的透明性与可解释性不足
解析
人工智能面临的社会挑战不仅涉及对劳动力市场的影响,还包括对社会结构和价值观的挑战,以及更广泛的社会、经济和伦理问题。
【 D 】 23.人工智能在零售与营销中的作用不包括?
-
- (A) 优化零售供应链
- (B) 挖掘潜在需求
- (C) 构建客户画像,提供个性化内容
- (D) 提高产品生产效率
解析
人工智能在零售与营销中的应用包括优化零售供应链、挖掘潜在消费需求、构建客户画像并提供个性化内容等。但提升产品生产效率属于制造环节的范畴,并非零售与营销的直接功能。
【 B 】 24.以下哪种云计算服务是IaaS的例子?
-
- (A) 企业微信
- (B) 阿里云服务器(ECS)
- (C) 网易云音乐
- (D) 腾讯文档
解析
IaaS 提供基础运算资源,如阿里云服务器(ECS)所提供的主机、网络设备租用服务。
【 B 】 25.人工智能在时尚美妆产业的应用不包括?
-
- (A) 新产品推荐
- (B) 设计新款服装
- (C) 虚拟试妆
- (D) 肤质检测
解析
文中提到人工智能在时尚美妆产业的应用包括虚拟试妆、肤质检测、新产品推荐等,设计新款服装并不属于时尚美妆产业的范畴。
【 D 】 26.智能交通系统的主要目的是什么?
-
- (A) 减少交通工具数量
- (B) 增加道路监视设备
- (C) 减少道路建设成本
- (D) 提升交通效率和安全性
解析
智能交通通过技术改善道路使用效率与行车安全。
【 C 】 27.根据摩尔定律,电子计算相关设备的发展规律不包括?
-
- (A) 芯片上容纳的晶体管数量每隔约十八个月翻倍
- (B) 执行运算的速度每隔约十八个月翻倍
- (C) 制造成本每隔约十八个月翻倍
- (D) 计算机的普及运用随着技术进步而提高
解析
摩尔定律指出,一个尺寸相同的IC芯片上,所容纳的晶体管数量,因为制程技术的不断提升与进步,每隔约十八个月会翻倍,执行运算的速度也会加倍,但制造成本却不会改变。
【 A 】 28.边缘计算能解决哪种问题?
-
- (A) 网络延迟
- (B) 用户数量不足
- (C) 终端设备成本高昂
- (D) 云端资源匮乏
解析
边缘计算通过本地数据处理减少存取云端数据传输带来的延迟。
【 A 】 29.专家系统的局限性不包括下列哪一项?
-
- (A) 能够应对动态、不确定或模糊的环境
- (B) 知识库建立成本高且更新困难
- (C) 没有自行学习的能力
- (D) 需要大量的维护成本
解析
专家系统的局限性在于没有自行学习的能力,必须依赖专家知识的显性化,导致知识库建立成本高且更新困难,难以处理动态、不确定或模糊的环境,需要大量的维护成本。
【 D 】 30.图灵测试的主要方式是?
-
- (A) 机器能在一定时间内解决特定问题就算通过测试
- (B) 机器能模仿人类的动作就算通过测试
- (C) 机器能完成复杂的数学计算就算通过测试
- (D) 机器能够与人类展开对话且不被看出是机器的身份时,就算通过测试
解析
图灵测试其主要的理论是,如果一台机器能够与人类展开对话,而不被看出是机器的身份时,就算通过这项测试,该机器便能宣称拥有智慧。
【 D 】 31.以下哪项不属于人工智能在医疗中的应用?
-
- (A) 达芬奇机器手臂协助外科手术
- (B) 推想科技利用视网膜图像训练 AI 算法检查眼疾
- (C) 计算机断层扫描仪器提供病人器官影像图
- (D) AI分析气候数据,模拟未来天气变化
解析
AI 分析气候数据属于环境保护领域,非医疗应用。
【 A 】 32.以下哪一种云计算部署模式更适合学校或非营利组织?
-
- (A) 社区云
- (B) 公有云
- (C) 混合云
- (D) 私有云
解析
社区云适用于具有共同需求(如教育、安全等)的组织群体。
【 A 】 33.什么是智能电网的核心功能?
-
- (A) 实时监测和优化电力分配
- (B) 降低电力成本
- (C) 增强电力输出
- (D) 减少能源消耗
解析
智能电网通过物联网技术实现实时监测与能源管理。
【 D 】 34.雾计算的主要功能是什么?
-
- (A) 降低计算能力需求
- (B) 提供云数据存储
- (C) 存储历史数据
- (D) 作为云端与边缘的中间层
解析
雾计算是云端与边缘之间的中间层,弥补了传统集中式运算的不足。
【 B 】 35.虚拟化技术的主要目的是什么?
-
- (A) 增强终端用户功能
- (B) 提高硬件资源的利用率
- (C) 减少设备数量
- (D) 创建新的网络协议
解析
虚拟化技术是通过虚拟化整合硬件资源 ,以提高资源的灵活性和利用率。
板块2人工智能与物联网+大数据+机器学习
一、选择题 共 35 题 毎题2.86分 共100分
【 D 】 1.蓝牙技术在物联网中的主要应用是什么?
-
- (A) 强化数据加密
- (B) 进行高精度定位
- (C) 传输大规模数据
- (D) 设备间的短距离通信
解析
蓝牙技术提供装置间的短距离高效通信功能。
【 D 】 2.计算机视觉的主要应用是什么?
-
- (A) 自动生成影像
- (B) 分析语音情绪
- (C) 优化数据存储
- (D) 模拟人眼进行影像识别与处理
解析
计算机视觉通过算法模拟人眼功能,用于目标识别和图像处理。
【 A 】 3.强化学习最适合应用于什么场景?
-
- (A) 自动驾驶与游戏策略优化
- (B) 自然语言翻译
- (C) 短期交易分析
- (D) 图片风格分类
解析
强化学习适用于需要长期决策与反馈的场景,如自动驾驶和游戏AI。
【 C 】 4.以下哪项技术促成智能建筑的实现?
-
- (A) 分布式存储
- (B) 虚拟现实
- (C) 自动化控制与物联网技术
- (D) 社交媒体整合
解析
智能建筑依赖物联网和自动化系统进行设备管理。
【 D 】 5.智能物联网(AIoT)结合了哪两项技术?
-
- (A) 5G与物联网
- (B) 蓝牙与物联网
- (C) RFID与AI
- (D) AI与物联网
解析
AIoT是AI与物联网的结合,为设备提供智能化的功能。
【 A 】 6.下列哪项是国内物联网设备(如商场 "蓝牙 Beacon 信标")的核心用途?
-
- (A) 基于位置精准推送营销信息
- (B) 增强区域 Wi-Fi 信号强度
- (C) 存储消费者个人数据
- (D) 实时统计商品销量
解析
国内物联网设备通过蓝牙低功耗(BLE)技术,向附近用户手机精准推送商家活动、优惠券等营销信息,实现基于地理位置的个性化服务,提升线下场景的互动体验。
【 D 】 7.Spark相较于Hadoop MapReduce的优势是什么?
-
- (A) 无需专业技术支持
- (B) 适合小型数据分析
- (C) 更低成本
- (D) 支持实时数据处理与内存运算
解析
Spark提供实时数据处理与内存中的快速运算能力。
【 C 】 8.什么是大数据的核心概念?
-
- (A) 提高计算机运算速度
- (B) 单一格式数据管理
- (C) 处理大量且多样化的数据集合
- (D) 减少数据存储量
解析
大数据的核心是管理与分析大量、多样化且时效性要求高的数据。
【 C 】 9.沃尔玛的「啤酒与尿布」研究展示了什么大数据应用?
-
- (A) 减少存货成本
- (B) 改善物流管理
- (C) 发现商品关联性以提升销售
- (D) 开发新产品
解析
沃尔玛通过分析顾客购物数据,发现商品关联性并调整陈列方式。
【 D 】 10.视频平台(如抖音)如何使用机器学习技术改进用户体验?
-
- (A) 减少服务器负载
- (B) 优化数据存储格式
- (C) 自动标记视频内容
- (D) 个性化视频推荐系统
解析
通过机器学习技术构建个性化推荐系统,基于用户的观看历史、互动行为(点赞 / 评论)和内容偏好等数据,利用深度学习算法分析用户兴趣模型,从而精准推送用户可能感兴趣的视频,显著提升用户观看体验和平台使用黏性。
【 C 】 11.数据科学(Data Science)的主要目的是什么?
-
- (A) 存储与压缩数据
- (B) 开发数据存取设备
- (C) 通过数据挖掘获取有价值信息
- (D) 减少人工操作
解析
数据科学通过统计学、机器学习等方法分析数据,揭示隐藏规律并指导决策。
【 D 】 12.以下哪一项属于机器学习在金融领域的应用?
-
- (A) 自动生成股票报告
- (B) 提升用户操作界面
- (C) 优化服务器性能
- (D) 智能理财机器人提供投资建议
解析
理财机器人使用机器学习技术分析数据并提供个性化投资建议。
【 D 】 13.以下哪一项属于非结构化数据?
-
- (A) 员工出勤记录
- (B) 月薪计算报告
- (C) 进出货记录
- (D) 社交网络互动数据
解析
非结构化数据包括无固定格式的信息,如社交网络数据。
【 B 】 14.大数据的四个特性中,哪一项代表数据的更新速度与实时性?
-
- (A) 真实性(Veracity)
- (B) 速度性(Velocity)
- (C) 多样性(Variety)
- (D) 巨量性(Volume)
解析
速度性指的是数据生成和处理的速度,许多数据需实时回应。
【 B 】 15.什么是「数据挖掘」的核心目标?
-
- (A) 建立数据存储技术
- (B) 发掘数据中的模式与规则
- (C) 减少数据错误率
- (D) 改善数据收集效率
解析
数据挖掘旨在从数据中挖掘出隐藏的模式与有意义的信息。
【 D 】 16.下列哪项是国内第三方支付平台(如支付宝)利用大数据进行金融诈骗检测的方式?
-
- (A) 提高交易速度
- (B) 减少用户数据存储
- (C) 减少服务器数量
- (D) 分析历史数据模式以检测异常行为
解析
第三方支付平台(如支付宝)通过大数据技术分析用户历史交易数据的时间、金额、地点等模式,结合机器学习算法建立异常交易识别模型,实时监测超出常规模式的交易行为,从而有效识别和拦截金融诈骗。
【 A 】 17.无监督学习的主要特点是什么?
-
- (A) 机器自动探索数据特征并分类
- (B) 需要结构化数据
- (C) 需要大量标记样本
- (D) 完全依赖人工标签
解析
无监督学习不需要标签,机器自动从数据中寻找特征进行分类。
【 B 】 18.什么是模式识别(Pattern Recognition)?
-
- (A) 建立自动化数据处理模型
- (B) 从数据中找出特征并进行分类
- (C) 分析非结构化数据
- (D) 优化数据存储结构
解析
模式识别是指从数据中萃取特征并进行分类,找出规律性。
【 A 】 19.大数据在游戏开发中的主要应用是什么?
-
- (A) 分析玩家行为以优化游戏设计
- (B) 提高游戏图形渲染速度
- (C) 减少游戏数据存储需求
- (D) 减少游戏运行资源
解析
游戏开发者利用大数据分析玩家行为来改进游戏设计。
【 C 】 20.Apache Hadoop的主要特点是什么?
-
- (A) 使用Python开发
- (B) 无法与云计算结合
- (C) 提供分布式数据存储与并行计算能力
- (D) 仅适用于小型数据集
解析
Hadoop是一种分布式数据存储与处理技术,适合处理大数据。
【 B 】 21.智能商务的目标是什么?
-
- (A) 减少商品成本
- (B) 以客户需求为核心优化商务模式
- (C) 提升物流速度
- (D) 扩大商品范围
解析
智能商务通过数据分析与技术,根据客户需求提供最佳服务。
【 D 】 22.国内机器学习框架(如飞桨 PaddlePaddle)的架构设计特色是什么?
-
- (A) 提供端到端实时语音合成解决方案
- (B) 仅支持单机 CPU 训练,无法扩展硬件
- (C) 依赖第三方库实现分布式计算
- (D) 基于动态图模式,支持灵活编程与多平台部署
解析
飞桨核心特色:动态图模式(即时执行、调试灵活)+ 多平台部署(服务器/边缘设备/移动端)。
【 D 】 23.在线分析处理(OLAP)的主要功能是什么?
-
- (A) 实现数据的快速压缩
- (B) 减少数据输入错误
- (C) 简化数据存储架构
- (D) 提供多维度数据分析与决策支持
解析
OLAP是一种多维数据分析工具,帮助进行快速的决策支持。
【 B 】 24.机器学习如何提升游戏AI表现?
-
- (A) 减少游戏运行所需资源
- (B) 分析玩家行为并优化游戏策略
- (C) 降低游戏难度
- (D) 自动生成游戏场景
解析
游戏AI通过分析玩家行为,改进其策略与互动体验。
【 A 】 25.在机器学习中,哪种学习方法需要少量标签化数据,并利用这些数据来辅助处理大量未标签化数据?
-
- (A) 半监督式学习
- (B) 强化学习
- (C) 无监督学习
- (D) 监督式学习
解析
半监督式学习它使用少量标签化数据作为“种子”,结合大量未标签化数据进行训练,通过挖掘未标签数据的潜在模式提升模型泛化能力(例如,在图像分类或文本分析中减少对标签数据的依赖)。
【 A 】 26.RFID技术的主要功能是什么?
-
- (A) 无线识别和数据传输
- (B) 存储大数据
- (C) 提供云端存储
- (D) 提高AI运算速度
解析
RFID能无线传输数据,用于感应和推送营销信息物品。
【 C 】 27.长尾效应的核心理念是什么?
-
- (A) 优化产品流通速度
- (B) 集中资源支持主流产品
- (C) 小众产品的市场份额也可与主流产品竞争
- (D) 减少非主流产品的产量
解析
长尾效应指小众产品通过全球市场累积出可观的市场份额。
【 A 】 28.智能城市的主要目标是什么?
-
- (A) 提升城市管理效率与居民生活质量
- (B) 扩展城市范围
- (C) 减少基础建设成本
- (D) 促进农村发展
解析
智能城市通过技术整合改善城市管理和居民生活。
【 B 】 29.以下哪个是物联网的感知层技术?
-
- (A) AI算法
- (B) RFID
- (C) 大数据分析
- (D) 区块链
解析
感知层包括RFID、传感器等,用于识别和感测设备状态。
【 D 】 30.大数据与人工智能(AI)的关系是什么?
-
- (A) 大数据无法支持AI的发展
- (B) AI能替代大数据的分析功能
- (C) AI是大数据的数据来源
- (D) 大数据为AI提供数据养分
解析
大数据为AI提供大量数据作为学习与分析的基础。
【 C 】 31.结构化数据的主要特征是什么?
-
- (A) 缺乏固定栏位
- (B) 不适用于日常管理
- (C) 有固定格式且适合标准化处理
- (D) 数据目标不明确
解析
结构化数据有固定的格式与栏位,适合日常重复性工作。
【 D 】 32.智能环境的目标是什么?
-
- (A) 减少污染物排放
- (B) 促进农业技术发展
- (C) 提高资源利用效率
- (D) 监测与优化自然与人造环境
解析
智能环境运用物联网技术进行环境监测与优化。
【 C 】 33.强化学习的核心精神是什么?
-
- (A) 预先设定固定规则
- (B) 对历史数据进行回归分析
- (C) 通过奖惩反馈优化行为
- (D) 增强数据的可读性
解析
强化学习通过试错及奖惩机制逐步优化行为和决策。
【 C 】 34.以下哪一项是商业智能(BI)的应用范畴?
-
- (A) 简化工作流程
- (B) 优化硬设备效能
- (C) 整合内外部数据以支持决策
- (D) 减少数据处理时间
解析
BI通过数据整合分析,帮助企业决策者进行战略规划。
【 A 】 35.物联网的核心概念是什么?
-
- (A) 设备之间的连接与通信
- (B) 存储大数据
- (C) 强化AI学习
- (D) 节约资源
解析
物联网的本质是让各种实体物体能够通过网络进行连接和信息交换。
板块3机器学习+深度学习+DeepSeek与生成式AI应用
一、选择题 共 35 题 毎题2.86分 共100分
【 A 】 1.深度学习的优势在哪些领域得以展现?
-
- (A) 图像、语音与文本处理
- (B) 化学反应模拟
- (C) 运算硬件设计
- (D) 生物细胞结构分析
解析
深度学习在高维度数据(如图像、语音和文本)处理上具有显著优势。
【 A 】 2.DeepSeek如何生成不同版本的回答?
-
- (A) 基于前一次的对话上下文生成回答
- (B) 随机生成完全不同的答案
- (C) 复制用户输入内容
- (D) 从预设数据库中挑选现成回答
解析
DeepSeek根据对话上下文生成回答,可能会对同一问题给出不同版本的答案。
【 B 】 3.下列哪项是国内开源机器学习框架(如飞桨 PaddlePaddle)的核心特点?
-
- (A) 只支持移动端应用
- (B) 支持多种机器学习算法并具备分布式计算能力
- (C) 提供实时语音识别
- (D) 仅用于处理影像数据
解析
开源机器学习框架(如飞桨 PaddlePaddle)支持深度学习、传统机器学习等多种算法,可构建图像识别、自然语言处理等模型,同时具备分布式训练能力,能在多节点服务器集群中高效处理大规模数据,满足企业级 AI 开发需求。
【 B 】 4.深度学习在自动驾驶中的核心作用是什么?
-
- (A) 记录驾驶者行为
- (B) 感知与理解周围环境
- (C) 优化车内温度控制
- (D) 控制车辆速度
解析
深度学习应用于影像感知技术,协助车辆理解环境并进行判断。
【 A 】 5.卷积神经网络(CNN)如何降低模型参数量?
-
- (A) 利用共享参数降低计算复杂度
- (B) 提高训练数据量
- (C) 存储所有图像特征
- (D) 增加神经元数量
解析
CNN使用卷积核共享参数,显著降低模型参数量与计算成本。
【 D 】 6.神经网络中的隐藏层主要功能是什么?
-
- (A) 接收输入信号
- (B) 输出分类结果
- (C) 存储训练数据
- (D) 执行特征提取与数据处理
解析
隐藏层负责主要的数据计算与特征提取,是神经网络的核心。
【 C 】 7.RNN(循环神经网络)中用于存储先前时间步计算结果,并传递到下一时间步的核心组件称为什么?
-
- (A) 训练数据
- (B) 输出层
- (C) 隐藏状态
- (D) 输入层
解析
在RNN中,隐藏状态(Hidden State) 是核心组件,负责存储历史时间步的计算结果。它作为网络记忆单元,将前一时刻的信息传递到当前时刻,使RNN能够处理序列数据的时序依赖关系(如文本、语音或游戏操作序列)。
【 C 】 8.循环神经网络(RNN) 的核心特性是什么?
-
- (A) 仅用于图像数据
- (B) 不适合时间序列处理
- (C) 具备记忆功能,保留历史信息
- (D) 完全静态运算
解析
RNN可处理时间序列数据,通过其循环结构保留历史信息。
【 D 】 9.DeepSeek主要是基于什么技术开发的?
-
- (A) 云计算
- (B) 物联网技术
- (C) 区块链技术
- (D) 生成式人工智能
解析
DeepSeek是由杭州深度求索人工智能基础技术研究有限公司开发,基于生成式人工智能技术,用于自然语言生成和对话。
【 A 】 10.监督式学习的主要特点是什么?
-
- (A) 使用带有标签的数据进行训练
- (B) 适用于处理无结构数据
- (C) 机器自动分类无标签数据
- (D) 模仿人类语言学习过程
解析
监督式学习需要标签化的训练数据,帮助机器学习分类和预测。
【 D 】 11.DeepSeek在辅助Python程序设计方面的主要优势是什么?
-
- (A) 能自动执行并测试代码
- (B) 只会提供单一最佳解法
- (C) 能够完全取代程序设计师
- (D) 能提供清楚易懂的示例代码
解析
DeepSeek能提供清楚易懂的示例代码,帮助使用者理解与学习。但它无法自动执行代码,不会只提供单一解法,也无法完全取代程序设计师。
【 B 】 12.要注册DeepSeek账号时,哪个步骤是必要的?
-
- (A) 上传身份证件
- (B) 验证电话号码
- (C) 验证电子邮件地址
- (D) 支付订阅费用
解析
DeepSeek注册账号需完成电话号码验证以启用服务。
【 C 】 13.DeepSeek目前支持哪种语言的互动?
-
- (A) 仅限英文
- (B) 主要是亚洲语言
- (C) 多种语言,如中文、英文、日文等
- (D) 仅支持拉丁语系
解析
DeepSeek支持包括中文、英文、日文等多种语言互动。
【 B 】 14.下列哪项技术是国内无人超市(如京东无人超市)的技术基础?
-
- (A) 传统机器学习
- (B) 深度学习与计算机视觉
- (C) 语音识别与深度学习
- (D) 强化学习与机器学习
解析
国内无人超市(如京东无人超市)主要通过深度学习与计算机视觉技术,实现商品识别、顾客行为追踪等无人化购物体验。该技术可对货架商品陈列、顾客拿取动作进行实时图像分析,结合深度学习算法完成自动结算,与传统超市的智能化升级需求相符。
【 A 】 15.DeepSeek设定角色背景后的回答有什么特点?
-
- (A) 更具针对性与专业性
- (B) 偏向日常生活建议
- (C) 总是更加简短
- (D) 脱离专业背景回答
解析
设定角色背景有助于生成针对性强且更专业的回答。
【 D 】 16.什么是深度神经网络的特征?
-
- (A) 只含有一层隐藏层
- (B) 完全无需数据训练
- (C) 无法处理非结构化数据
- (D) 含有多层隐藏层
解析
深度神经网络包含多层隐藏层,相较浅神经网络可处理更复杂的问题。
【 C 】 17.DeepSeek与 Baidu搜索在输出结果上的本质区别是什么?
-
- (A) DeepSeek仅支持技术问题,Baidu搜索支持所有问题
- (B) Baidu搜索完全不需要用户输入,DeepSeek需要精确指令
- (C) DeepSeek直接生成整合答案,Baidu搜索返回网页链接列表
- (D) DeepSeek无需训练数据,Baidu搜索依赖历史数据
解析
DeepSeek基于输入问题直接生成整合后的答案,而Baidu提供网站信息,需自行整理。
【 D 】 18.DeepSeek能够提供的营销文案类型包括什么?
-
- (A) 传统新闻稿
- (B) 个人履历模板
- (C) 手工艺教学课程
- (D) 社交媒体营销文案与短视频脚本
解析
DeepSeek擅长撰写社交媒体营销文案及短视频脚本。
【 D 】 19.以下哪一项不属于机器学习的四种学习方式?
-
- (A) 无监督学习
- (B) 半监督式学习
- (C) 监督式学习
- (D) 混合学习
解析
机器学习的四种方式为监督式学习、无监督学习、半监督式学习与强化学习。
【 A 】 20.BERT模型的特点是什么?
-
- (A) 双向上下文理解能力
- (B) 单向语境分析
- (C) 仅适用于标准化数据
- (D) 用于影像分类
解析
BERT能双向理解上下文,大幅提升自然语言处理的准确性。
【 D 】 21.DeepSeek的答案可能存在什么问题?
-
- (A) 仅能处理标准问题
- (B) 无法进行翻译
- (C) 无法生成代码
- (D) 资料来源可能不完全准确
解析
DeepSeek的回答依赖于训练数据,可能会因资料来源不准确而产生偏差。
【 B 】 22.自然语言处理(NLP)的目的是什么?
-
- (A) 分析财务报告
- (B) 让计算机理解并使用人类语言
- (C) 处理影像数据
- (D) 开发游戏逻辑
解析
NLP专注于让机器能够理解、分析并生成人类语言。
【 A 】 23.DeepSeek不能实现的语音互动功能是什么?
-
- (A) 播放音乐
- (B) 生成语音信息的内容文本
- (C) 设计语音识别助理的交互逻辑
- (D) 实时语音翻译
解析
DeepSeek不支持直接播放音乐或音频流媒体功能。
【 C 】 24.下列哪项是由国内人工智能企业开发的人工智能工具或框架,可用于训练 AI 学习游戏操作?
-
- (A) k - 最近邻算法
- (B) Alpha-Beta 剪枝算法
- (C) 飞桨 PaddlePaddle
- (D) 深度学习算法
解析
百度开发的飞桨 PaddlePaddle,通过让 AI 与游戏环境交互,利用奖励机制优化决策策略,实现 AI 对游戏操作的学习,与强化学习 “试错 - 优化” 的核心逻辑一致。
【 B 】 25.使用DeepSeek时,哪一个因素最影响回答的准确性?
-
- (A) 计算机硬件性能
- (B) 提问的清晰度与具体性
- (C) 用户的网络连接速度
- (D) AI的训练模型大小
解析
清晰具体的提问能帮助DeepSeek更好地生成准确回答。
【 D 】 26.AlphaGo 战胜人类棋手的核心决策机制主要基于哪项技术?
-
- (A) 自然语言处理
- (B) 模糊逻辑
- (C) 深度学习
- (D) 强化学习
解析
AlphaGo 的核心创新是 “强化学习”:通过 自我对弈(Self-Play) 生成海量棋局,利用奖励机制(胜/负结果)持续优化落子策略。
深度学习仅用于棋盘状态的特征提取(辅助工具),非决策主因。
【 A 】 27.智能语音助理中的语音识别技术依赖什么实现?
-
- (A) 深度学习算法
- (B) 监督式学习
- (C) 统计分析模型
- (D) 简单规则匹配
解析
语音助理如Siri和Alexa使用深度学习技术处理语音数据并进行识别。
【 C 】 28.DeepSeek-R1 无法直接完成以下哪种任务?
-
- (A) 撰写科学研究报告
- (B) 提供程序设计协助
- (C) 实时股票交易
- (D) 生成控制硬件设备代码
解析
实时股票交易:必须依赖实时数据、交易权限和金融系统集成,DeepSeek作为纯文本模型无法直接实现。
【 D 】 29.机器学习的核心目的是什么?
-
- (A) 替代数据工程师
- (B) 减少数据存储需求
- (C) 自动进行软件更新
- (D) 模拟人类的分类与预测能力
解析
机器学习的目的是通过算法分析数据,模拟人类的分类和预测能力。
【 B 】 30.DeepSeek的哪个功能可以帮助用户进行语法校正?
-
- (A) 情感分析功能
- (B) 语法错误修正功能
- (C) 语音转文字功能
- (D) 翻译功能
解析
DeepSeek可直接识别并修正语法错误,提高文本质量。
【 B 】 31.卷积神经网络(CNN)最适合的应用是什么?
-
- (A) 网络安全分析
- (B) 图像与影像识别
- (C) 财务数据分析
- (D) 文本翻译
解析
CNN特别擅长处理图像数据,广泛应用于图像分类、物品侦测等。
【 C 】 32.以下哪个方法可以让DeepSeek生成更有创意的答案?
-
- (A) 限制输出的字数
- (B) 反复询问相同问题
- (C) 提供多种可能性的问题引导
- (D) 避免提供上下文
解析
多样化的问题引导能激发DeepSeek提供更多创意的回答。
【 B 】 33.深度学习的主要特点是什么?
-
- (A) 专注于物理模拟技术
- (B) 模仿人类大脑处理数据的方式
- (C) 仅用于结构化数据分析
- (D) 完全基于传统机器学习
解析
深度学习以神经网络为基础,模仿人类大脑处理数据的方式。
【 D 】 34.使用DeepSeek改进回应的有效方法是什么?
-
- (A) 重复提问相同问题
- (B) 提供少量背景信息
- (C) 使用多种语言同时提问
- (D) 提供清晰且详细的上下文
解析
提供清晰且详细的上下文能有效改进DeepSeek回应的质量。
【 B 】 35.神经网络的基本组成单位是什么?
-
- (A) 多层网络
- (B) 神经元
- (C) 训练数据
- (D) 算法
解析
神经网络的基本组成单位为神经元,其结构模仿人类大脑。


被折叠的 条评论
为什么被折叠?



