【等差数列维护最值】codechef STREETTA

博客内容涉及在给定区间对每个数添加等差数列后,如何高效地处理单点最值查询。通过分析,发现每个区间只需存储一个标记,每次修改会形成两条直线的交点,影响至少半数区间,从而实现O(nlog^2n)复杂度的解决方案。对于区间最值问题,可能需要采用更复杂的树套树结构维护下凸壳。
摘要由CSDN通过智能技术生成

题意:给区间每个数集加上一个等差数列,求单点最值;加上一个等差数列,求单点权值。

第二个修改标记可以直接合并,没什么好说;第一个个修改一开始以为每个区间要维护一个下凸壳,因为加进来一个等差数列,相当于是给这个区间加了一个半平面,然后标记永久化一下,每次单点询问就一路到每个区间二分一下位置;但其实考虑每个区间都只存一个标记的话,加入一个标记,两条直线会有一个交点,那么至少有一个等差数列会对这个区间的一半以上的数生效,那么就将影响少于一半的那个等差数列下传,必定只会传往左右儿子的其中一个,而且在另一边这个等差数列也必定不会生效,那么一个修改会分为logn个区间,每个区间递归下传也至多logn层,复杂度就是O(nlog^2n)

如果是区间最值,感觉真的要树套树维护下凸壳来弄了。

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <utility>
#define m_p(x,y) make_pair(x,y)
const long long oo=(1LL<<60);
using namespace std;
typedef long long ll;
struct tag{
    long long a,b;
}t[2],s[8000000][2];
int n,m,ss,root,l[8000000],r[8000000];
int ori()
{
	++ss;
	s[ss][0].a=s[ss][0].b=-oo,
	s[ss][1].a=s[ss][1].b
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值