题意:给区间每个数集加上一个等差数列,求单点最值;加上一个等差数列,求单点权值。
第二个修改标记可以直接合并,没什么好说;第一个个修改一开始以为每个区间要维护一个下凸壳,因为加进来一个等差数列,相当于是给这个区间加了一个半平面,然后标记永久化一下,每次单点询问就一路到每个区间二分一下位置;但其实考虑每个区间都只存一个标记的话,加入一个标记,两条直线会有一个交点,那么至少有一个等差数列会对这个区间的一半以上的数生效,那么就将影响少于一半的那个等差数列下传,必定只会传往左右儿子的其中一个,而且在另一边这个等差数列也必定不会生效,那么一个修改会分为logn个区间,每个区间递归下传也至多logn层,复杂度就是O(nlog^2n)
如果是区间最值,感觉真的要树套树维护下凸壳来弄了。
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <utility>
#define m_p(x,y) make_pair(x,y)
const long long oo=(1LL<<60);
using namespace std;
typedef long long ll;
struct tag{
long long a,b;
}t[2],s[8000000][2];
int n,m,ss,root,l[8000000],r[8000000];
int ori()
{
++ss;
s[ss][0].a=s[ss][0].b=-oo,
s[ss][1].a=s[ss][1].b