2022.2.26解题报告
今天的题目比较水。
T1.特殊年份
题目描述:
思路:
直接按照题意判断,输出答案即可。
代码:
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
int cnt = 0;
int main() {
for (int i = 0 ; i < 5 ; i ++ ) {
int a;
scanf("%d", &a);
if (a / 1000 == a % 100 / 10 && a % 10 - 1 == a / 100 % 10)
cnt ++ ;
}
printf("%d\n", cnt);
return 0;
}
T2.小平方
题目描述:
思路:
n的数据规模小,因此直接从1遍历到n - 1然后每一个数字都按照题意进行判断,最后输出答案即可。
注意:题目中的“一半”不是指除以二的商,而是严格除以二得到的数,例如5的一半是2.5,9的一半是4.5。
代码:
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
int n, cnt = 0;
int main() {
scanf("%d", &n);
double t = (double) n / 2;
for (int i = 1 ; i < n ; i ++ )
if (i * i % n < t)
cnt ++ ;
printf("%d\n", cnt);
return 0;
}
T3.完全平方数
题目描述:
思路:
对一个完全平方数进行质因数分解,得到的每一个质因数的指数都应是偶数。因此,我们只需要将输入的数字分解一遍质因数,如果有哪一个质因数的指数为奇数,就将答案乘上这个质因数(因为加上这一次后指数就一定是偶数了),最后输出答案即可。
代码:
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
typedef long long LL;
LL n;
int main() {
scanf("%lld", &n);
LL res = 1; //答案
for (int i = 2 ; i <= n / i ; i ++ ) {
int s = 0; //指数
while (n % i == 0) {
n /= i;
s ++ ;
}
if (s % 2 != 0)
res *= i; //如果指数为奇数,就将答案乘上该质因数
}
if (n > 1)
res *= n;
printf("%lld\n", res);
return 0;
}
T4负载均衡
题目描述:
思路:
对于每一次询问,我们要判断当前时刻,b号计算机的剩余算力是否足以执行新的任务,并且要将已经结束的任务停止。
对于删除已经结束的任务这一操作,我们可以用堆来快速实现。我们只需要定义一个小根堆,堆中存储每一个任务结束的时间,那么在执行当前询问时,只需要判断堆顶元素(即结束时间最早的任务)是否小于等于当前时刻,如果是,那么就删除,直到堆顶元素大于当前时刻。注意,在删除一个任务之前,要先将这个任务对于本台计算机的算力消耗加回去。
代码:
#include <iostream>
#include <cstring>
#include <algorithm>
#include <queue>
#define x first
#define y second
using namespace std;
typedef pair<int, int> PII;
const int N = 2e5 + 10;
int n, m;
int s[N]; //记录每一个电脑的剩余计算能力
priority_queue<PII, vector<PII>, greater<PII>> q[N];
//堆,pair中first存储的是一个任务的结束时间,second存储的是这个任务的算力消耗
int main() {
scanf("%d%d", &n, &m);
for (int i = 1 ; i <= n ; i ++ )
scanf("%d", s + i);
while (m -- ) {
int a, b, c, d;
scanf("%d%d%d%d", &a, &b, &c, &d);
while (q[b].size() && q[b].top().x <= a) { //将已经结束的任务删除
s[b] += q[b].top().y; //将当前电脑b剩余的计算能力加上要删除的任务的消耗
q[b].pop();
}
if (s[b] < d)
puts("-1");
else {
s[b] -= d;
printf("%d\n", s[b]);
q[b].push({a + c, d});
}
}
return 0;
}
T5.国际象棋
题目描述:
思路:
我们可以用状态压缩动态规划来解决这道题。
由于每一个马最多只能影响到上下各两行,所以我们只需要在每一个状态中压缩两行的状态即可。
状态表示:f[i][a][b][j]
状态定义:表示在第i行,第i - 1行摆放马的情况为a,第i行摆放马的情况为b,前i行总共摆放了j个马。其中a和b是两个二进制数,在它们的每一位上,0表示没有摆放马,1表示摆放了一个马。
状态转移方程:由于本题是要计算总方案数,因此状态转移方程不是取最值,而是直接加上前面的状态。那么什么状态能够转移到f[i][a][b][j]呢?我们往上看一行,设第i - 2行的摆放马的状态为c(同样也是一个二进制数),那么状态就变成了f[i - 1][c][a][j - 第i行摆放的马的个数]。所以只要a、b、c之间满足不会互相攻击到对方的条件,就可以直接加上这个状态来转移。即:
f[i][a][b][j] += f[i - 1][c][a][j - 第i行摆放的马的个数]
合法性判断:
如图,在这三行中,假设第i行摆放了一个马在图中“×”的位置,那么图中两个红圈的位置就是不能摆放马的位置。也就是说,只有当一个在第i - 1行的马与一个在第i行的马所在的列数差了2,或者一个在第i - 2行的马与一个在第i行的马所在的列数差了1,才会判断不合法。
即判断:a & (b << 2) || b & (a << 2)和c & (b << 1) || b & (c << 1)。这样就可以解决这道题了。
代码:
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
const int N = 110, M = 1 << 6, K = 21, MOD = 1e9 + 7;
int n, m, k;
int f[N][M][M][K];
int get_count(int x) { //计算一个数x的二进制表示中有多少个1
int res = 0;
while (x) {
res ++ ;
x -= x & -x;
}
return res;
}
int main() {
scanf("%d%d%d", &n, &m, &k);
f[0][0][0][0] = 1;
for (int i = 1 ; i <= m ; i ++ )
for (int a = 0 ; a < 1 << n ; a ++ )
for (int b = 0 ; b < 1 << n ; b ++ ) {
if (b & (a << 2) || a & (b << 2))
continue;
for (int c = 0 ; c < 1 << n ; c ++ ) { //枚举一下第i - 2行的摆放马的情况
if (a & (c << 2) || c & (a << 2)) //第i - 1行和第i - 2行之间也要判断一下马之间的列数是不是差了2
continue;
if (c & (b << 1) || b & (c << 1))
continue;
int t = get_count(b); //第i行摆放的马的个数
for (int j = t ; j <= k ; j ++ ) //枚举一下前i行摆放的马的总数
f[i][a][b][j] = (f[i][a][b][j] + f[i - 1][c][a][j - t]) % MOD;
}
}
int res = 0;
for (int a = 0 ; a < 1 << n ; a ++ ) //将第m行,摆放了k个马的所有摆放情况枚举一下
for (int b = 0 ; b < 1 << n ; b ++ )
res = (res + f[m][a][b][k]) % MOD;
printf("%d\n", res);
return 0;
}