URAL 1012 K-based Numbers. Version 2 dp+大数

Let’s consider  K-based numbers, containing exactly  N digits. We define a number to be valid if its  K-based notation doesn’t contain two successive zeros. For example:
  • 1010230 is a valid 7-digit number;
  • 1000198 is not a valid number;
  • 0001235 is not a 7-digit number, it is a 4-digit number.
Given two numbers  N and  K, you are to calculate an amount of valid  K based numbers, containing  N digits.

You may assume that 2 ≤ K ≤ 10; N ≥ 2; N + K ≤ 1800.

这个题目和之写过的dp 一样 只不过数位比较大,必须用大数,然而本人并不会大数,于是乎找了一位学长ac的模板

蓝儿奇怪的是, 学长AC代码窝交的时候就变成的RE地址不够 ,这看脸的社会啊; 蓝儿把大小开到题目要求的极限的大小之后 MLE 了。 窝感到了这个世界深深地恶意。蓝儿,窝又在网上找到了一个只适用这个题目的大数模板的AC代码,果蓝RE数组不够大,这看颜的世界啊,他们是怎么AC的。窝感受到了世界深深地恶意。然而新的模板改了以后就可以ac了。。。。

学长的模板 看去来就好高大上啊。。。。。。蓝儿AC不了,不知道是不是哪里抄错了么

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
using namespace std;
const int  N = 200;
struct big{
    int s[N],len;
    big(){
        memset(s, 0, sizeof(s));
        len = 1;
    }
    big (int num) { *this = num;}
    big (const char *num) { *this = num;}
    big operator = (const int num){
        char s[N];
        sprintf(s, "%d", num);
        *this = s;
        return *this;
    }
    big operator = (const char *num){
        len = strlen(num);
        while(len > 1&& num[0] == '0') num++,len--;
        for(int i = 0; i < len; i++) s[i] = num[len-i-1]-'0';
        return *this;
    }
    void deal()
    {
        while(len > 1 && !s[len-1]) len--;
    }
    big operator + (const big &a) const{
        big ret;
        ret.len = 0;
        int top = max(len,a.len), add = 0;
        for(int i = 0; add || i < top; i++)
        {
            int now = add;
            if( i < len) now += s[i];
            if( i < a.len) now += a.s[i];
            ret.s[ret.len++] = now%10;
            add = now/10;
        }
        return ret;
    }
    string str() const{
        string ret = "";
        for(int i = 0; i < len; i++) ret = char(s[i]+'0')+ret;
        return ret;
    }
};
istream & operator >> (istream& in,big &x){
    string s;
    in >> s;
    x = s.c_str();
    return in;
}
ostream& operator << (ostream & out, const big &x) {
    out << x.str();
    return out;
}
big dp[220][12];
int n,k;
void input()
{
    scanf("%d%d",&n,&k);
}
void slove()
{
    for(int i = 1; i < k; i++)
    {
        dp[1][i] = 1;
    }
    for(int i = 2; i <= n; i++)
    {
        for(int j = 0; j < k; j++)
        {
            for(int l = 0; l < k; l++)
            {
                if(!j && !l) continue;
                dp[i][l] = dp[i][l] + dp[i-1][j];
            }
        }
    }
    big ans = 0;
    for(int i = 0; i < k; i++)
        ans = ans + dp[n][i];
    cout<<ans<<endl;
}
int main()
{
    input();
    slove();
    return 0;
}

网上得到后修改 了的AC代码

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
using namespace std;
const int  N = 1800;
struct big{
    int s[N],len;
};
big dp[1800];
int n,k;
void trans(int x)
{
    for(int i = 1; i <= dp[x].len; i++)
    {
        dp[x].s[i+1]+=dp[x].s[i]/10;
        dp[x].s[i]%=10;
    }
    while(dp[x].s[dp[x].len+1] > 0)
    {
        dp[x].len++;
        dp[x].s[dp[x].len+1] = dp[x].s[dp[x].len]/10;
        dp[x].s[dp[x].len]%=10;
    }
}
int main()
{
    while(scanf("%d%d",&n,&k)!=EOF)
    {
        memset(dp,0,sizeof(dp));
        dp[1].len = 1; dp[1].s[1] = k - 1; trans(1);
        dp[2].len = 1; dp[2].s[1] = (k-1)*k; trans(2);
        for(int i = 3; i <= n; i++)
        {
            dp[i].len = dp[i-1].len;
            for(int j = 1; j <= dp[i-1].len; j++)
            {
                dp[i].s[j] = dp[i-1].s[j] + dp[i-2].s[j];
            }
            trans(i);
            for(int j = 1;j <= dp[i].len; j++) dp[i].s[j]*=(k-1);
            trans(i);
        }
        for(int i = dp[n].len; i >= 1; i--)
            printf("%d",dp[n].s[i]);
        printf("\n");
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值