搜索引擎中用户行为特征分析

本文探讨了搜索引擎如何利用网页信息和用户行为数据进行信息检索。提到了传统的IR技术,如向量空间模型和Tf*idf算法,以及Google的PageRank和IBM的HITS算法。还指出,由于用户行为的丰富信息,可以使用Direct技术来分析用户对检索结果的后续行为。Gray Cullis的分类强调了用户行为信息的重要性,包括查询词分布、翻页行为和点击URL的统计等。
摘要由CSDN通过智能技术生成

搜索引擎维护的两类信息:

       网页相关信息(通过信息获取部分获取);用户行为信息(通过log记录获取)

 

传统IR技术:(information retrieval

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值