题干请参考
[树上距离HDU2586(LCA)](https://blog.csdn.net/hwdn3000/article/details/127939235?spm=1001.2014.3001.5501)
Tarjan算法是离线解决LCA问题的算法。
在线算法指每读入一个查询(求一次LCA就叫作一次查询),都需要运行一次程序才能得到本次查询答案。若一次查询时间需要O(logn)时间,则m次查询需要O(mlogn)时间。
离线算法是先读入所有查询,然后运行一次程序得到所有查询答案。可以在O(n+m)时间内解决LCA问题。
Tarjan算法:
1、初始化集合号数组和访问数组,fa[i]=i,vis[i]=0。(并查集思想每个节点自成一个集合)
2、从u出发深度优先遍历,标记vis[u]=1,深度优先遍历u所有未访问的邻接点,在遍历过程中更新距离,回退时更新集合号。
3、当u的邻接点全部遍历完毕时,检查关于u的所有查询,若存在一个查询u、v,而vis[v]=1,则利用并查集找v的祖宗,找到的节点就是u、v的最近公共祖先。
**注1:**当u的邻接点全部遍历完毕时,检查关于u的所有查询,若存在一个查询u、v,为什么必须是vis[v]=1。因为vis[v]=1表示已经遍历过v节点,并且v节点的父节点已经更新过,如果不更新,每个节点的父节点默认是自己。
**注2:**u、v的最近公共祖先就行向上查找第一个没有访问完的邻接点,也就是向下已访问,回退是没有访问,它的fa[ ]还没有更新,仍满足fa[i]=i。
代码如下
#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;
const int maxn=40005;
int n,m;
int head[maxn],dis[maxn],cnt;//头结点,距离
int fa[maxn],ans[maxn];
bool vis[maxn];
vector<int>query[maxn],query_id[maxn];
//query[ ]存放查询节点号,query_id[]存放查询节点编号, 就是第几次查询
struct Edge{
int to,c,next;
}e[maxn<<1];
void add(int u,int v,int w){
e[++cnt].to=v;
e[cnt].c=w;
e[cnt].next=head[u];
head[u]=cnt;
}
void add_query(int x,int y,int id){
query[x].push_back(y);
query_id[x].push_back(id);
query[y].push_back(x);
query_id[y].push_back(id);
}
int find(int x){//并查集找祖宗
if(x!=fa[x])
fa[x]=find(fa[x]);
return fa[x];
}
void tarjan(int u){
vis[u]=1;
for(int i=head[u];i;i=e[i].next){
int v=e[i].to,w=e[i].c;
if(vis[v])
continue;
dis[v]=dis[u]+w;
tarjan(v);
fa[v]=u;
}
for(int i=0;i<query[u].size();i++){//u相关的所有查询
int v=query[u][i];
int id=query_id[u][i];
if(vis[v]){
int lca=find(v);
ans[id]=dis[u]+dis[v]-2*dis[lca];
}
}
}
int main(){
int x,y,T,lca;
cin>>T;
while(T--){
cin>>n>>m;
for(int i=1;i<=n;i++){//初始化
head[i]=vis[i]=dis[i]=0;
fa[i]=i;
query[i].clear();
query_id[i].clear();
}
cnt=0;
for(int i=1;i<n;i++){//输入一棵树的n-1边
int x,y,z;
cin>>x>>y>>z;
add(x,y,z);
add(y,x,z);
}
for(int i=1;i<=m;i++){
cin>>x>>y;
if(x==y)
ans[i]=0;
else
add_query(x,y,i);
}
tarjan(1);
for(int i=1;i<=m;i++)
cout<<ans[i]<<endl;//输出x y的距离
}
return 0;
}