树上距离HDU2586(利用并查集的Tarjan算法)

题干请参考
[树上距离HDU2586(LCA)]
(https://blog.csdn.net/hwdn3000/article/details/127939235?spm=1001.2014.3001.5501)
Tarjan算法是离线解决LCA问题的算法。
在线算法指每读入一个查询(求一次LCA就叫作一次查询),都需要运行一次程序才能得到本次查询答案。若一次查询时间需要O(logn)时间,则m次查询需要O(mlogn)时间。
离线算法是先读入所有查询,然后运行一次程序得到所有查询答案。可以在O(n+m)时间内解决LCA问题。
Tarjan算法:
1、初始化集合号数组和访问数组,fa[i]=i,vis[i]=0。(并查集思想每个节点自成一个集合)
2、从u出发深度优先遍历,标记vis[u]=1,深度优先遍历u所有未访问的邻接点,在遍历过程中更新距离,回退时更新集合号。
3、当u的邻接点全部遍历完毕时,检查关于u的所有查询,若存在一个查询u、v,而vis[v]=1,则利用并查集找v的祖宗,找到的节点就是u、v的最近公共祖先。

**注1:**当u的邻接点全部遍历完毕时,检查关于u的所有查询,若存在一个查询u、v,为什么必须是vis[v]=1。因为vis[v]=1表示已经遍历过v节点,并且v节点的父节点已经更新过,如果不更新,每个节点的父节点默认是自己。
**注2:**u、v的最近公共祖先就行向上查找第一个没有访问完的邻接点,也就是向下已访问,回退是没有访问,它的fa[ ]还没有更新,仍满足fa[i]=i。

代码如下

#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;
const int maxn=40005;
int n,m;
int head[maxn],dis[maxn],cnt;//头结点,距离 
int fa[maxn],ans[maxn];
bool vis[maxn];
vector<int>query[maxn],query_id[maxn];
//query[ ]存放查询节点号,query_id[]存放查询节点编号, 就是第几次查询 
struct Edge{
	int to,c,next;
}e[maxn<<1];
 
void add(int u,int v,int w){
	e[++cnt].to=v;
	e[cnt].c=w;
	e[cnt].next=head[u];
	head[u]=cnt;
}

void add_query(int x,int y,int id){
	query[x].push_back(y);
	query_id[x].push_back(id);
	query[y].push_back(x);
	query_id[y].push_back(id);
}

int find(int x){//并查集找祖宗
	if(x!=fa[x])
		fa[x]=find(fa[x]);
	return fa[x];
}

void tarjan(int u){
	vis[u]=1;
	for(int i=head[u];i;i=e[i].next){
		int v=e[i].to,w=e[i].c;
		if(vis[v])
			continue;
		dis[v]=dis[u]+w;
		tarjan(v);
		fa[v]=u;
	}
	for(int i=0;i<query[u].size();i++){//u相关的所有查询
		int v=query[u][i];
		int id=query_id[u][i];
		if(vis[v]){
			int lca=find(v);
			ans[id]=dis[u]+dis[v]-2*dis[lca];
		}
	}
}

int main(){
	int x,y,T,lca;
	cin>>T;
	while(T--){
		cin>>n>>m;
		for(int i=1;i<=n;i++){//初始化
			head[i]=vis[i]=dis[i]=0;
			fa[i]=i;
			query[i].clear();
			query_id[i].clear();
		}	
		cnt=0;
		for(int i=1;i<n;i++){//输入一棵树的n-1边
			int x,y,z;
			cin>>x>>y>>z;
			add(x,y,z);
			add(y,x,z);
		}
		for(int i=1;i<=m;i++){
			cin>>x>>y;
			if(x==y)
				ans[i]=0;
			else
				add_query(x,y,i);
		}
		tarjan(1);
		for(int i=1;i<=m;i++)		
			cout<<ans[i]<<endl;//输出x y的距离 	
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值