《基数排序》的思想以及代码实现--排序算法(七)

前言

1.排序算法的分类

  1. 内部排序:
    指将需要处理的所有数据都加载到内部存储器(内存)中进行排序。
  2. 外部排序法:
    数据量过大,无法全部加载到内存中,需要借助外部存储(文件等)进行排序。
  3. 常见的排序算法分类
    在这里插入图片描述

一、基数排序(Radix Sort)的基本概念

1.基本介绍

  • 基数排序(radix sort)属于“分配式排序”(distribution sort),又称“桶子法”(bucket sort)或 bin sort,顾名思义,它是通过键值的各个位的值,将要排序的元素分配至某些“桶”中,达到排序的作用。
  • 基数排序法是属于稳定性的排序,基数排序法的是效率高的稳定性排序法基数排序(Radix Sort)是桶排序的扩展。
  • 基数排序是 1887 年赫尔曼·何乐礼发明的。它是这样实现的:将整数按位数切割成不同的数字,然后按每个位数分别比较。
  • 基数排序是按照低位先排序,然后收集;再按照高位排序,然后再收集;依次类推,直到最高位。

基数排序的方式可以采用最低位优先LSD(Least sgnificant digital)法或最高位优先MSD(Most sgnificant digital)法。本博客使用最低位优先LSD(Least sgnificant digital)法实现。

2.执行逻辑

  1. 统一所有待比较数值,使之具有同样的数位长度,数位较短的数前面补零。
  2. 从最低位开始,依次进行一次排序。
  3. 再执行高一位的排序。直到最高位排序完成。

3.图解过程

步骤:
在这里插入图片描述

4.代码实现

package com.datastructure.sort;

import java.util.Arrays;

/**
 * @author Hacah
 * @date 2020/11/9 22:45
 * <p>
 * 基数排序
 */
public class RadixSort {

    public static void main(String[] args) {
        int[] arr = {53, 34, 232, 36, 157, 375};
        radixSort(arr);
    }


    public static void radixSort(int[] arr) {

        // 得到基数
        // 1.获取数组中最大的数
        int maxInt = 0;
        for (int i = 0; i < arr.length; i++) {
            if (arr[i] > maxInt) {
                maxInt = arr[i];
            }
        }
        // 得到把数组放桶中排序的次数
        int times = String.valueOf(maxInt).length();
        // 创建出十个桶存放排序数据,每个桶最大放的数据是排序数组的所有数据。
        int[][] bucket = new int[10][arr.length];
        // 创建一个数组用来记录每一个桶存放了多少数据,该数组的下标对应桶的编号。
        int[] bucketCounts = new int[10];


        for (int t = 0; t < times ;t++) {

            // 1.把数组的数据放到对应的桶里。
            // 遍历数组,获得每一个数组的个位数
            for (int j = 0; j < arr.length; j++) {
                // 获得相应的位数的数值存在变量baseInt里
                int pow = (int)Math.pow(10, t);
                int baseInt = arr[j] /pow % 10;
                // 把对应的数组放到桶中
                bucket[baseInt][bucketCounts[baseInt]] = arr[j];
                bucketCounts[baseInt]++;
            }
            // 2.按照顺序把桶的数据取出来放回原来的数组
            // 遍历每一个桶
            // 设置数组下标
            int index = 0;
            for (int i = 0; i < bucketCounts.length; i++) {
                // 判断桶中是否有数据
                if (bucketCounts[i] != 0) {
                    for (int v = 0; v < bucketCounts[i]; v++) {
                        arr[index] = bucket[i][v];
                        index++;
                    }
                }
                // 把记录数组重置为0,避免影响下次存取数据。
                bucketCounts[i] = 0;
            }

            System.out.println(Arrays.toString(arr));
        }
    }

}

5.算法特性

每一次关键字的桶分配都需要O(n)的时间复杂度,而且分配之后得到新的关键字序列又需要O(n)的时间复杂度。k为桶的数量,每个节点有d个关键字。
时间复杂度:O ( 2n ∗ d )
空间复杂度:O ( n + k )
稳定性:稳定

四、排序算法情况

在这里插入图片描述

相关文章:
《冒泡排序》的思想以及代码实现–排序算法(一)
《选择排序》的思想以及代码实现–排序算法(二)
《插入排序》的思想以及代码实现–排序算法(三)
《希尔排序》的思想以及代码实现–排序算法(四)
《快速排序》的思想以及代码实现–排序算法(五)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值