前言
1.排序算法的分类
- 内部排序:
指将需要处理的所有数据都加载到内部存储器(内存)中进行排序。 - 外部排序法:
数据量过大,无法全部加载到内存中,需要借助外部存储(文件等)进行排序。 - 常见的排序算法分类
一、基数排序(Radix Sort)的基本概念
1.基本介绍
- 基数排序(radix sort)属于“分配式排序”(distribution sort),又称“桶子法”(bucket sort)或 bin sort,顾名思义,它是通过键值的各个位的值,将要排序的元素分配至某些“桶”中,达到排序的作用。
- 基数排序法是属于稳定性的排序,基数排序法的是效率高的稳定性排序法基数排序(Radix Sort)是桶排序的扩展。
- 基数排序是 1887 年赫尔曼·何乐礼发明的。它是这样实现的:将整数按位数切割成不同的数字,然后按每个位数分别比较。
- 基数排序是按照低位先排序,然后收集;再按照高位排序,然后再收集;依次类推,直到最高位。
基数排序的方式可以采用最低位优先LSD(Least sgnificant digital)法或最高位优先MSD(Most sgnificant digital)法。本博客使用最低位优先LSD(Least sgnificant digital)法实现。
2.执行逻辑
- 统一所有待比较数值,使之具有同样的数位长度,数位较短的数前面补零。
- 从最低位开始,依次进行一次排序。
- 再执行高一位的排序。直到最高位排序完成。
3.图解过程
步骤:
4.代码实现
package com.datastructure.sort;
import java.util.Arrays;
/**
* @author Hacah
* @date 2020/11/9 22:45
* <p>
* 基数排序
*/
public class RadixSort {
public static void main(String[] args) {
int[] arr = {53, 34, 232, 36, 157, 375};
radixSort(arr);
}
public static void radixSort(int[] arr) {
// 得到基数
// 1.获取数组中最大的数
int maxInt = 0;
for (int i = 0; i < arr.length; i++) {
if (arr[i] > maxInt) {
maxInt = arr[i];
}
}
// 得到把数组放桶中排序的次数
int times = String.valueOf(maxInt).length();
// 创建出十个桶存放排序数据,每个桶最大放的数据是排序数组的所有数据。
int[][] bucket = new int[10][arr.length];
// 创建一个数组用来记录每一个桶存放了多少数据,该数组的下标对应桶的编号。
int[] bucketCounts = new int[10];
for (int t = 0; t < times ;t++) {
// 1.把数组的数据放到对应的桶里。
// 遍历数组,获得每一个数组的个位数
for (int j = 0; j < arr.length; j++) {
// 获得相应的位数的数值存在变量baseInt里
int pow = (int)Math.pow(10, t);
int baseInt = arr[j] /pow % 10;
// 把对应的数组放到桶中
bucket[baseInt][bucketCounts[baseInt]] = arr[j];
bucketCounts[baseInt]++;
}
// 2.按照顺序把桶的数据取出来放回原来的数组
// 遍历每一个桶
// 设置数组下标
int index = 0;
for (int i = 0; i < bucketCounts.length; i++) {
// 判断桶中是否有数据
if (bucketCounts[i] != 0) {
for (int v = 0; v < bucketCounts[i]; v++) {
arr[index] = bucket[i][v];
index++;
}
}
// 把记录数组重置为0,避免影响下次存取数据。
bucketCounts[i] = 0;
}
System.out.println(Arrays.toString(arr));
}
}
}
5.算法特性
每一次关键字的桶分配都需要O(n)的时间复杂度,而且分配之后得到新的关键字序列又需要O(n)的时间复杂度。k为桶的数量,每个节点有d个关键字。
时间复杂度:O ( 2n ∗ d )
空间复杂度:O ( n + k )
稳定性:稳定
四、排序算法情况
相关文章:
《冒泡排序》的思想以及代码实现–排序算法(一)
《选择排序》的思想以及代码实现–排序算法(二)
《插入排序》的思想以及代码实现–排序算法(三)
《希尔排序》的思想以及代码实现–排序算法(四)
《快速排序》的思想以及代码实现–排序算法(五)