一、智能演变
-
从大数据到大知识
- 模型预训练数据量呈爆发式增长,如从2018年GPT-1的4.6GB到2020年GPT-3的45TB,相当于三千万本《西游记》。
- 主要模型数据集涵盖维基百科、书籍、杂志期刊、Github代码等,为模型提供客观知识、故事讲述能力、语言严谨性和逻辑推理能力。
-
模型对比(GPT-3与DeepSeek-V3)
- 发布时间:GPT-3于2020年6月发布,DeepSeek-V3于2024年12月发布。
- 训练数据量:GPT-3为3000亿token,DeepSeek-V3达到14.8万亿token。
- 参数量:GPT-3为175B(密集架构),DeepSeek-V3为671B(MoE架构)。
- 训练成本:GPT-3为$12M,DeepSeek-V3为$5.57M。
- 激活参数量:GPT-3为175B(全激活),DeepSeek-V3为37B(5.5%激活率)。
- 主要数据类型:GPT-3为通用互联网文本(含代码/数学),DeepSeek-V3为强化代码/数学的高质量数据。
-
大模型带来的知识空间变革
- 大模型整合了多媒体知识空间和全体人类知识空间,为个体知识空间提供了更广阔的知识背景。
二、人机协作
-
三体人学习地球知识的类比
- 原始数据:通过电磁波等方式获取原始、无目标性的地球文明信息。
- 探测器搜集数据集:精准观察、查漏补缺,收集数据。
- 人类反馈实现对齐:通过动态反馈和价值博弈,使模型更符合人类价值观。
-
学习过程中的不同阶段
- 预训练:为基础模型提供广泛的知识。
- 监督微调(SFT):对模型进行针对性训练,提高特定任务的性能。
- 人类反馈强化学习(RLHF):利用人类反馈优化模型,提升其决策能力和价值判断。
-
DeepSeek-R1-Zero的训练过程
- 结合准确性奖励(如数学、编程任务的可验证结果)和格式奖励(如强制输出结构化标签),通过GRPO算法优化模型。
-
思维链(CoT)技术
- 通过模拟人类逐步推理过程,提升人工智能模型复杂任务处理能力。
- 核心是将问题拆解为多个中间步骤,引导模型生成逻辑链条,增强推理的准确性和可解释性。
-
人机协作的模式
- 白盒派(如DeepSeek V3):强制展示推理过程链,支持步骤回溯。优势包括错误可追溯、合规性强、调试效率高;但推理延迟增加,部分复杂任务表现受限。
- 黑箱派(如OpenAI GPT、Meta Llama 3):仅输出最终结果,决策过程不可见。具有计算效率高、商业保密性强、处理开放性任务更灵活等优势;但存在“聪明汉斯”效应、合规成本高等缺陷。
三、产业现状
-
大模型发布情况
- 2024年全球发布149个大模型(其中中国20个),2025年2月观测到534个大模型(其中中国117个)。
- AI工具迅猛增长,2023年有8813个,2024年达13,795个(占57%),2025年2月统计有23915个AI工具,涵盖233个分类,162万AI API。
-
企业应用案例
- 百度搜索:2025年2月18日集成DeepSeek-R1提供AI搜索服务,支持复杂问题推理和深度搜索功能。
- 微信搜索:2025年2月16日灰度测试DeepSeek-R1,提供AI搜索入口和深度思考服务。
- 支付宝百宝箱:2025年2月11日支持DeepSeek全系列模型,用户可构建智能体并一键发布到小程序。
- 南方电网:2025年2月12日部署千亿参数电力大模型,实现故障预测和能耗优化。
- 华为云:2025年2月12日推出混合云DeepSeek本地部署方案,支持全系列模型并优化推理性能。
-
AI产业发展趋势
- 提示词工程:通过精心设计输入提示,引导LLM生成期望的高质量输出。无需重新训练模型和标注数据,具有灵活性和简单性。
- 检索增强生成(RAG):利用外部知识库增强答案,提供支持性的证据,适合数据频繁更新的场景,具有成本效益高、可信度和可解释性高等特点。
- 微调:针对特定任务或领域定制,显著提高任务性能,适应特定领域的细微差别、语气或术语,但依赖足够高质量标注数据。
四、教育成长
-
AI在教育中的应用
- 教师辅助:生成教案、润色课件、出题组卷、自动阅卷、便捷搜索、快速答疑等,提升教学效率。
- 学生学习:提供个性化学习、课程设计、教学管理支持,助力学生自主学习和知识掌握。
-
师生关系的转变
- 由传统的教师-学生二元结构转变为人工智能-教师-学生三元结构,人工智能在教学过程中发挥辅助和促进作用。
-
教育模式的变革
- 个性化学习:AI大模型支持的个性化学习,满足不同学生的学习需求和节奏。
- 对话式学习:AI大模型扩大了“问题”的边界,鼓励学生提出问题、探索知识,实现更深入的学习和理解。
-
教育中的AI能力培养
- 树立基本AI意识,试用和使用前沿AI工具,与AI共同成长,将AI融入工作流,提升个人和组织的竞争力。
综上所述,智能时代的全面到来和人机协作的新常态正在深刻改变我们的生活和工作方式。从智能演变、人机协作、产业现状到教育成长,各个领域都在经历着前所未有的变革。面对这一时代机遇,我们需要积极拥抱AI技术,提升自身AI能力,以更好地适应和引领未来的发展。