ChatGPT研究分享:插件模式的利与弊

文章探讨了GPT-4引入的插件模式,分析了Toolformer的原理和OpenAI的插件实现,指出虽然插件模式扩展了AI的功能,但并未解决记忆和学习知识的局限性。作者还提及了安全性问题以及知识与价值观在模型训练中的影响,强调Human-in-the-Loop的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1、插件的实现方式

1.1 Toolformer

1.2 OpenAI插件文档

1.3 个人感想

2、一些有意思的点

2.1 知识和价值观

2.2 算法的研究方向


OpenAI近期公开了GPT-4,除了各方面性能的大幅度提升,最大的惊喜应该来自于插件模式的引入,GPT-4可以执行代码、搜索引擎、以及集成其他App的功能了。

这无疑是对于AI后续应用模式的一次突破性的尝试,同时,也引发了业界对于AI的探讨。因此,本篇基于插件模式展开讨论。

总体来说,插件模式的模型本身并没有革新,仍然保持着原有的局限性。而AI的安全性问题也仍然在探讨中,目前需要相信人大于AI。

1、插件的实现方式

OpenAI并没有公开插件的具体实现原理。因此,对于原理的探究,可以从两个方面来展开:1)meta的公开论文Toolformer;2)OpenAI的插件开发文档。

下面分别来展开:

1.1 Toolformer

我曾经说过,目前GPT的两个最大缺陷在于:没有记忆无法直接学习知识

  • 没有记忆,导致GPT无法持续学习,只能依靠历史训练集和对话的上下文信息,做有限的推理。

  • 无法直接学习知识,意味着人类总结出来的各种公式、理论等,都无法直接被编码进GPT中。这也是GPT往往犯低级错误的原因,他完全依靠逻辑推导,没有理论做基础支撑。

将LLM和一些其他工具相结合,显然是一种解决当前局限性的思路。就像人类学习中,我们往往并不需要知道所有问题的答案,但是需要知道如何利用工具(书本、计算机、搜索引擎等)去找到答案。

这个观点也并不绝对。将答案嵌入到脑海中,对于提升效率和思考复杂度是至关重要的。就好比在做题过程中,如果所有公式都是临时查询的,那可能无法灵活应用,组合成精妙的答案。

因此,meta在2023年2月,发表了相关论文Toolformer。具体原理其实相当符合直觉,因此推测其他LLM等也是使用的类似原理。

回顾一下Transformer的实现原理:

这篇文章需要关注的部分是,输入输出的token化表示。GPT将一段文字,拆解成了若干个token。所谓token,大致对应英文语法中的词根,在汉字中,应当是对应单个文字。而GPT的学习过程,就是依靠大量的训练集,去学习token和token之间的复杂关系。

因此Transformer本身可以应用在大部分领域,只要寻求一种token化表达方式即可。比如在图像领域,可以把一个3x3的像素认为是一个token。

显然,token可以是文字之外的东西。GPT本身就定义了许多类似[START]、[END]等特征信息,用于方便算法去识别关键的位置。同样的,插件也可以被定义为一种token。

Toolformer中的表达方式类似于:今天是<API>Calendar(当前日期)</API>

算法会根据训练集,学习什么时候应该调用API,并生成对应的调用语句,用<API>包裹起来。在实际执行的时候,程序会识别到这段<API>,并发起调用,返回执行结果。算法在接收到执行结果后,在执行一遍Encoder、Decoder流程,就可以继续输出了。大致效果如下:

个人认为,之所以插件功能可以实现,是因为Transformer架构极

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值