Leetcode--738. 单调递增的数字

给定一个非负整数 N,找出小于或等于 N 的最大的整数,同时这个整数需要满足其各个位数上的数字是单调递增。

(当且仅当每个相邻位数上的数字 x 和 y 满足 x <= y 时,我们称这个整数是单调递增的。)

示例 1:

输入: N = 10
输出: 9
示例 2:

输入: N = 1234
输出: 1234
示例 3:

输入: N = 332
输出: 299
说明: N 是在 [0, 10^9] 范围内的一个整数。

思路:

如果a[i]一直大于等于a[i-1],直接输出就好

如果不是,需要判断,主要分两种情况:

1.如果a[i]<a[i-1]并且a[i-1]>a[i-2],则a[i-1]-=1,后面的都变为9

例如:123453->123449

2.如果a[i]<a[i-1]并且a[i-1]>=a[i-2],则一直向前遍历,直到a[k]!=a[i-1],然后a[k]-=1,h后面的都变为9

例如:123332->122999

提交的代码:

class Solution {

    public int monotoneIncreasingDigits(int N) {

        int t,sum=0,i=0,n=1,b;

            int a[] = new int[12];

            t = N;

            while(t!=0)

            {

                t = t/10;

                i++;

            }

            t = N;

            b=i;

            while(t!=0)

            {

                a[i-1] = t%10;

                t = t/10;

                i--;

            }

            t=0;

            sum = a[0];

            for(i =0;i<b;i++)

            {

                if(i>0)

                {

                    if(a[i]>=a[i-1])

                    {

                        sum = sum*10+a[i];

                        if(a[i]==a[i-1])

                        {

                            n++;  //n用来记录有多少个连续相同的数字

                        }

                        else

                        {

                            n=1;

                        }

                        continue;

                    }

                    else

                    {

                        while(n!=0)

                        {

                            sum = sum-a[i-1-t];

                            sum = sum/10;

                            t++;

                            n--;

                            //System.out.println(sum);

                        }

                        a[i-t] = a[i-t] - 1;

                        sum = sum*10+a[i-t];

                       // System.out.println(sum);

                        for(int j=i-t+1;j<b;j++)

                        {

                            a[j] = 9;

                            sum = sum*10+a[j];

                        }

                        break;

                    }

                }

            }

            return sum;

    }

}

LeetCode 题目 491 - 递增子序列 (Incremental Subsequence) 是一道关于算法设计的中等难度题目。这道题要求你在给定整数数组 nums 中找出所有长度大于等于 1 的递增子序列。递增子序列是指数组中的一串连续元素,它们按照顺序严格增大。 解决这个问题的一个常见策略是使用动态规划(Dynamic Programming),特别是哈希表或者单调栈(Monotonic Stack)。你可以维护一个栈,每当遍历到一个比栈顶元素大的数字时,就将它推入栈,并更新当前最长递增子序列的长度。同时,如果遇到一个不大于栈顶元素的数字,就从栈顶开始检查是否存在更长的递增子序列。 以下是 C++ 解决此问题的一种简单实现: ```cpp class Solution { public: vector<int> lengthOfLIS(vector<int>& nums) { int n = nums.size(); if (n == 0) return {}; // 使用单调栈存储当前已知的最大子序列 stack<pair<int, int>> stk; stk.push({nums[0], 1}); for (int i = 1; i < n; ++i) { while (!stk.empty() && nums[i] > stk.top().first) { // 如果新数大于栈顶元素,找到一个更长的递增子序列 int len = stk.top().second + 1; ans.push_back(len); stk.pop(); } // 如果新数不大于栈顶元素,尝试从当前位置开始寻找更长子序列 if (!stk.empty()) { stk.top().second = max(stk.top().second, 1); } else { stk.push({nums[i], 1}); } } return ans; } private: vector<int> ans; }; ``` 在这个解决方案中,`ans` 存储所有的递增子序列长度,最后返回这个结果向量即可。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值