- 博客(21)
- 收藏
- 关注
原创 Xshell 链接服务器,后台跑程序
2.密码为自己服务器上的密码,自己复制粘贴。2.主机写服务器上10.xxxx开头的数字。打开自己新建的服务器连接,“接受并保存”Xshell 链接服务器,后台跑程序。3.端口写最后几位数字32xxx。1.用户名为root。初始化conda环境。
2025-11-05 15:30:26
203
原创 NLP基础05
本文摘要:文章介绍了RNN模型的搭建与测试过程,内容包括LSTM和GRU的回顾、模型构建代码实现、数据预处理及数据集构建。通过构建NameClassDataset类处理文本数据,使用RNN模型对国家名称进行分类。核心部分展示了RNN类的定义、前向传播过程以及隐藏状态初始化方法。最后通过测试函数验证了模型的结构和维度转换过程,为后续训练和评估奠定了基础。
2025-10-08 20:23:21
249
原创 NLP基础03-04
本文摘要了自然语言处理中的文本表示方法和词云分析技术。主要内容包括:1) 文本张量表示方法如one-hot编码和word2vec模型;2) 使用jieba进行中文分词和词性标注;3) 文本数据分析方法包括标签分布统计和词汇统计;4) 词云展示技术,通过jieba筛选形容词并生成词云;5) N-gram特征原理,特别是bi-gram和tri-gram特征的应用。文章还提供了Python代码示例,演示如何从文本数据中提取形容词并生成词云可视化。
2025-09-28 23:44:57
394
原创 NLP基础01-02
本文摘要:文章介绍了NLP中的文本预处理与分词技术,重点讲解了jieba分词的三种模式(精确、全模式和搜索引擎模式)及其实现代码。同时涵盖了命名实体识别(NER)、词性标注(POS)和文本张量表示方法(如one-hot编码)。还展示了PyTorch张量操作示例,为自然语言处理任务提供了基础技术支撑。
2025-09-18 06:26:23
198
原创 深度学习基础D5-D6
本文摘要介绍了深度学习中的卷积神经网络(CNN)和循环神经网络(RNN)的关键概念与应用。CNN部分涵盖图像处理基础、网络结构(卷积层、池化层、全连接层)、PyTorch实现及图像分类案例(CIFAR10数据集)。RNN部分重点讲解处理序列数据的原理、流程、API实现(输入输出维度关系)以及歌词生成案例,展示了如何通过词嵌入和隐藏状态处理文本数据。整体强调了两类网络在特征提取(CNN)和序列建模(RNN)中的核心作用及实际实现方法。
2025-09-08 09:31:00
148
原创 深度学习基础D3-D4
本文摘要: 深度学习基础知识总结,涵盖神经网络结构、激活函数、参数初始化、损失函数及优化算法等内容。重点介绍了sigmoid、tanh、ReLU等激活函数的特点及适用场景,以及Xavier和Kaiming参数初始化方法。详细讲解了多分类交叉熵和二分类交叉熵损失函数,以及回归任务中的MAE、MSE和SmoothL1损失。最后讨论了梯度下降算法的三种变体(BGD/SGD/MBGD)和优化技巧如动量法、AdaGrad等,用于解决鞍点和局部极小值问题。通过PyTorch代码示例展示了网络构建和参数统计方法,并分析了
2025-09-03 19:41:50
669
原创 随机过程课堂杂记3
本文摘要: 文章首先介绍了卷积的概念,指出两个独立随机变量之和的分布是其分布的卷积,并分别推导了全轴和半轴卷积公式。随后讨论了泊松过程中的时间间隔、到来时间与更新次数之间的关系,提出了用卷积计算更新分布的方法。第二部分重点分析了更新次数与平均更新次数的数学表达,建立了时间与次数的对应关系,推导出平均更新次数M(t)的级数表达式。最后通过离散时间更新过程的例子,展示了如何计算特定场景下的更新概率。全文通过概率论工具系统阐述了更新过程的理论框架。
2025-09-03 09:50:11
88
原创 深度学习绘图报错:OpenMP链接冲突分析与解决方案
深度学习绘图时出现OpenMP运行时库冲突错误,提示多个OpenMP库被链接到程序中。该问题常见于同时使用PyTorch/TensorFlow和NumPy/SciPy时,尤其在Windows+Anaconda环境下。临时解决方案是设置环境变量KMP_DUPLICATE_LIB_OK=TRUE,但长期建议统一OpenMP版本、避免混用不同来源的MKL或OpenMP依赖库,并使用虚拟环境隔离依赖。
2025-08-28 16:02:12
476
原创 01线性回归案例b
本文介绍了一个基于PyTorch的线性回归模型实现过程。首先使用make_regression生成包含噪声的线性数据集,包含100个样本点。然后通过TensorDataset和DataLoader将数据转换为PyTorch张量并进行批量处理。模型采用简单的线性层y=wx+b,使用均方误差作为损失函数和SGD优化器进行训练。训练过程包括前向传播、损失计算、反向传播和参数更新四个步骤。最后通过可视化损失曲线和对比真实直线与预测直线来评估模型效果。完整代码展示了从数据生成到模型训练的全流程,包括随机种子设置、设备
2025-08-28 15:06:08
505
原创 01线性回归的案例a
本文介绍了使用PyTorch实现线性回归的完整流程。首先通过sklearn.make_regression生成模拟数据,包括100个样本点,添加高斯噪声和偏置项。然后将数据转换为PyTorch张量,构建DataLoader实现分批训练。模型采用简单的线性层torch.nn.Linear,训练过程使用均方误差损失函数和SGD优化器,通过10个epoch的迭代更新参数。关键步骤包括:前向传播计算预测值、反向传播计算梯度、优化器更新参数,以及每个epoch的损失记录。
2025-08-27 18:40:18
454
原创 非齐次泊松过程+混合泊松过程
② 独立、平稳增量(stationary + independent increments);这说明“在极小区间里,几乎只可能有 0 次或 1 次到达,而且概率正比于区间长度。也就是说,这段笔记推导的目的就是 ——,从而得到 NHPP 的概率律。
2025-08-24 20:22:10
560
原创 随机过程课堂杂记2
基础概念回顾均值函数 mX(t)=E[Xt].m_X(t)=\mathbb{E}[X_t].mX(t)=E[Xt].协方差函数 BX(s,t)=E [(Xs−E[Xs])(Xt−E[Xt])].B_X(s,t)=\mathbb{E}\!\left[(X_s-\mathbb{E}[X_s])(X_t-\mathbb{E}[X_t])\right].BX(s,t)=E[(Xs−E[Xs])(Xt−E[Xt])].相关函数 RX(s,t)=E[XsXt].R_X(s,t)=\mathbb
2025-08-19 20:31:57
459
原创 深度学习基础D1-D2
深度学习是从人工智能和机器学习发展而来的技术分支,它通过构建神经网络自动学习特征,省去了传统机器学习中人工特征工程的步骤。深度学习经历了三次发展浪潮,从早期的国际象棋程序到2012年AlexNet的突破,再到2022年ChatGPT的问世。神经网络由输入层、隐藏层和输出层组成,通过激活函数引入非线性因素。常用的激活函数包括Sigmoid和Tanh:Sigmoid将输入映射到(0,1)区间,适合作为概率输出,但存在梯度消失问题;Tanh输出范围(-1,1),收敛速度更快,但仍存在梯度消失风险。目前深度学习主要
2025-08-14 23:45:10
251
原创 统计学习 chapter2
统计学习的定义:预测和分析特点:各种理论统计和机器学习的区别:统计学习的研究对象是数据,同类数据具有一定的统计规律性,数据可以是离散的或者连续的,通过概率统计模型来实现的统计学习:监督学习+无监督学习假设空间:y=kx+by=kx+by=kx+b,例如y=0.8x+0.2y=0.8x+0.2y=0.8x+0.2准则(策略):算法实现:具体步骤:监督(有标签)非监督(无标签)重要性x1(1)x1(2)⋮x1(n)x2(1)x2(2)⋮x2(n)⋯⋯⋱⋯xN(1)xN(2)⋮x
2025-08-13 00:00:20
824
原创 随机过程笔记(润色)
对象集VVV:向量的集合(元素可以是函数、序列、矩阵等)辅助集FFF:标量域(常取实数域R\mathbb{R}R或复数域C\mathbb{C}C提示:这里对文章进行总结:例如:以上就是今天要讲的内容,本文仅仅简单介绍了pandas的使用,而pandas提供了大量能使我们快速便捷地处理数据的函数和方法。
2025-08-12 16:58:39
1582
原创 深度学习笔记(润色)
多层感知机通过非线性激活函数打破了线性模型的局限,能有效处理复杂数据。激活函数将数据映射到高维空间,实现线性可分。多层结构(输入层、隐藏层、输出层)允许特征抽象。激活函数的选择影响训练效率和性能(如避免梯度消失)。
2025-08-05 16:23:05
883
原创 深度神经网络(简略笔记)
多层感知机通过非线性激活函数打破了线性模型的局限,能有效处理复杂数据。激活函数将数据映射到高维空间,实现线性可分。多层结构(输入层、隐藏层、输出层)允许特征抽象。激活函数的选择影响训练效率和性能(如避免梯度消失)。
2025-08-05 16:22:22
697
原创 欢迎使用Markdown编辑器
这篇文章介绍了Markdown编辑器的基本功能和使用方法。主要内容包括:编辑器的全新界面设计、代码高亮、图片拖拽、数学公式支持、甘特图和UML图表功能等特色功能;常用快捷键操作指南;文本样式修改、链接图片插入、代码片生成、表格创建等基础语法说明;以及文章导出导入操作指引。全文通过清晰的层级结构和丰富的示例,帮助用户快速掌握这一轻量级标记语言的使用技巧,提升写作效率。
2025-07-20 12:04:29
680
原创 Python中numpy和matplotlib的一个小错误
matplotlib包已经更新到了3.9.0版本,但是在画图时候,无法正常显示图像。
2024-06-15 09:47:11
1051
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅