Flink vs. Spark简单分析

本文对比了Apache Flink与Apache Spark两大流批处理框架的特点。针对流处理能力、性能、内存管理、容错性等多个维度进行了详细分析。指出Flink在流处理上优势明显,而Spark则在批处理及社区支持方面更为成熟。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

比较指标Apache SparkApache Flink
数据处理Hadoop生态:基于批处理,流批均可基于流处理的流批处理,独立运行库
流引擎微批处理:不足以处理实时数据与计算结果真正的流处理引擎:基于流,构建流程里\SQL\微批等
数据流基于DAG基于运行时CDG(Cyclic Dependency Graph)
计算模型收集并计算实时流,基于算子的流处理模型
性能成熟的社区背景,基于微批的流处理没有Flink优秀与其他框架相比,性能优异,特别是在机器学习和图处理方面
内存管理提供自主内存管理,Spark1.6之后逐渐转向自动内存管理自动内存管理:拥有自己的内存管理系统,独立于Java GC
容错性Exactly-Once语义基于Chandy-Lamport分布式快照:轻量级,强一致性
扩展性高扩展性,最大可扩展到8000个节点高扩展性:已知的最大集群达到了几千个节点
迭代处理基于批的迭代:每个迭代独立处理与调度基于流的迭代数据:只处理改变的数据,挺高任务的性能
支持语言基于Scala语言:Scala/Java/Python/R基于Java语言:Java/Scala/Python/R
优化点任务手动优化。最新的优化器是基于Catalyst的函数式算子优化器:1、增加新的优化手段;2、使开发者可以自定义扩展优化器根据实际程序接口进行独立优化。Flink的优化器类似于RDMS的优化过程,但优化对象为Flink程序,而不是SQL查询。
延迟性基于内存以及RDD,低延迟低延迟、高吞吐
处理速度处理速度很快大部分场景下,速度快于Spark。Flink通过去重,增加处理速度
可视化提供了Web接口可以提交/执行任务,执行计划可视化。Spark/Flink都集成到了Zeppelin中。同样提供了Web接口,可以提交和执行任务,结果的执行计划同样可以在这个接口查看
回复性根据DAG失败重试,Checkpoint机制Checkpoint机制保存数据源、中间状态
安全性Spark的安全管理一般,目前仅支持密码授权。Spark可以重用Yarn/HDFS的ACLs、Kerberos等管理方式通过Hadoop、Yarn框架的授权方式来给用户授权。
资源使用大量RAM,逐渐增加大量RAM,逐渐增加
兼容性兼容与Hadoop,能够处理HDFS、YARN、Cassandra、HIve等数据源完全兼容与Hadoop,提供了兼容性包
抽象性基于RDD的封装Dataset抽象的封装
易用性非常丰富的高级算子同样具有高级算子
交互模式提供交互Shell,可以执行AD-HOC查询跟Scala交互集成,既可以是本地模式,也可以是集群模式
实时分析每秒百万级数据处理主要用于实时流处理,虽然它也提供了较快的批处理
调度器基于内存,自己处理流调度可以使用Yarn调度,也有自己的调度器
SQL支持Spark-SQL:提供了HSQL,以及Dataframe的DSL提供了Table API和SQL类似的语言,Dataframe类似的DSL还在实验阶段,SQL接口落地时间未知
缓存缓存到内存,加快提升后续性能缓存到内存,加快提升后续性能
硬件要求中高级硬件中高级硬件
机器学习基于内存缓存以及其他手段,Spark是机器学习的强大平台与DAG相比,Flink基于CDG更有效的表现算法
代码量远小于Hadoop的代码量,更加容易执行远小于Hadoop的代码量,更加容易执行
高可用HAHA
S3支持支持支持
部署独立部署、Mesos、Yarn独立部署、Yarn
承压性手动设置基于系统架构的承压性
多重消除exactly onceexactly once
窗口属性基于时间的窗口基于记录,或其他用于自定义的窗口
许可Apache License 2.Apache License 2.

指导性原则

  对比了Flink与Spark的一些特性,那么在实际项目中,如何选择合适的处理框架呢?

  1. Ivan Mushketyk : “Apache Flink vs. Apache Spark”, 2017年
      如果你需要处理复杂的流计算,那么建议选择Flink,因为Flink对流处理的支持与性能有明显的提升。如果你不需要流计算,想要最好选择Spark。因为Spark是一个更加成熟的项目,拥有庞大的社区以及用户群体,更多的训练材料以及第三方类库。但应该记住,Flink将来临。另一边,如果你喜欢实验性的最新技术,Flink肯定是最佳选择。
      是不是意味着几年之内,我们会使用Flink?答案惊人。尽管Flink拥有很多惊奇的特性,Spark同样也具有。自从2015年引入Tungsten项目之后,Spark逐渐引入了许多特性。输赢尚未可知。

  2. Melanie Däschinger: “Apache Spark vs. Apache Flink”, 2017年
      如果高吞吐量、低延迟和良好的容错性的数据流处理需求是开发的驱动因素,那么Flink提供了一个优秀的应用程序框架[1]。如果应用程序应该嵌入到Hadoop发行版中,比如Hortonworks或Cloudera,那么Spark将是一个更好的选择,因为它已经很好地集成到各自的平台中,并得到了供应商的支持。Flink和Spark都在不断改进,以提供更简单、更快和更智能的数据处理特性。

  最终,最佳框架的决定取决于这样一个问题:“哪一个更适合我的需求?”即使是开发团队最喜欢的编程语言也可能是一个关键因素——Spark的Java API源自Scala API:这有时会导致不吸引人的Java代码。数据工程师通常更喜欢Python或Scala, Spark支持更成熟、功能更完备、速度更快的api。Spark与R的紧密集成——“数据科学的黄金之子”——在R中提供了Spark,从而很好地集成到现有的数据科学工具箱中。

参考博文

Apache Flink vs Apache Spark
Apache Flink vs. Apache Spark
Apache Flink vs Apache Spark – A comparison guide

个人见解

  Spark目前比较成熟,对各种数据源的支持也比较友好,特别是与Hadoop生态的耦合以及对Hive的支持。Flink目前操作Hive比较困难,通过HadoopInputFormat/HadoopoutputFormat来操作比较原始,或者JDBC来操作限制较多。
  从稳定性以及社区支持来看,目前Spark资源比较丰富,技术比较成熟;Flink目前社区同样比较活跃,具有较多的前瞻技术
相对而言,对实时性要求不是很好的应用场景(微秒级),Spark可以优先考虑。
  从安装以及编程角度考虑,两者安装都比较方便,且编程语言为java/Scala,比较友好。由于Flink目前处于快速成长阶段,对算子的支持没有Spark多。
  两者相似性较多,属于竞对工具,合理选择最切合应用场景的工具。

        </div>
					<link href="https://csdnimg.cn/release/phoenix/mdeditor/markdown_views-258a4616f7.css" rel="stylesheet">
            </div>
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值