13,14代 cpu

1.

https://www.chiphell.com/thread-2625435-1-1.html

2024年8月20,开玩黑神话悟空之前更新:0X129微代码我们已经在多台14900K 14900KS工作站全面测试了。目前总结两种解决方案,如果未来无特殊情况,本文不再更新。文章在更新时不保留先前旧内容。

献祭了一颗全新盒装14900KS作为血的代价重要提醒:强烈不推荐主板厂商默认的设定,尤其要留意核心电压!我们在华硕Z790主板更新0X129微代码后,在未使用intel baseline或intel default setting情况下,14900KS核心电压高达1600毫伏,生产力测试不到数分钟便出现不可逆损坏缩缸寄了,已经走RMA。切记总是先套用intel baseline或intel default setting设定,或者手动限制核心电压墙VMAX为1500毫伏以内,避免此类悲剧重演。

2024年8月4日这天我们激动万分,因为从合作伙伴西电机房那边传来测试报告喜讯,多台14900K和14900KS工作站在新的调整设置后,连续24小时生产力测试顺利完成。意味着这场前后历时近一年的,对intel的13、14代处理器运行不稳定现象的探索调查与问题分析挖掘之路总算可以画上完美的句号并落下帷幕了。

当然过去一年中我们也走了一些弯路,首先是用于测试的方法存在些许潜在问题,直到7月底我们更换一套新测试方法。另外由于需要观察了解合作伙伴西电机房那边生产力环境下的长期使用反馈,也耽误了大量时间。否则本文至少能在三个月前就能发表,但时至今日发出也不算晚。

为避免骗取关注和广告嫌疑,我们先将解决方案,以及如何自查处理器是否存在不稳定的方法,以及对策放在前面。鉴于本人文笔一般,主要故事以时间线形式讲述。有兴趣的朋友茶余饭后可以了解一下我们这前后一年中所付出的种种努力。欢迎共同探讨。

你可自由转载本文,转载时请注明出处:完结篇,20240820更新:两种解决方案针对intel第13、14代处理器运行不稳定问题,BIOS设定设置建议,不可逆损伤损坏(缩缸)自查方法-地球发展联盟

在本项目中,我们将采用C语言作为开发工具,借助树这种数据结构来构建一个家族谱管理系统。家族谱本质上是一个层次化的结构,非常适合用树来表示,其中每个节点表家族中的一个成员,节点之间的关系则反映了家族成员之间的辈分和血缘联系。 系统需要具备以下功能: 增加成员:允许用户向家族谱中添加新的成员。用户需要输入新成员的相关信息,如姓名、性别、出生日期等,以及他与家族中已有成员的关系,比如是某人的子女、兄弟姐妹等。系统根据这些信息将新成员正确地插入到家族谱树的相应位置。 删除成员:当家族中有成员去世或其他原因需要从家族谱中移除时,用户可以使用此功能。用户输入要删除的成员的姓名或其他唯一标识信息,系统查找并删除该节点,并且要处理好由此带来的家族谱树结构的调整,确保树的完整性。 修改成员信息:家族成员的信息可能会发生变化,例如联系方式更新、婚姻状况改变等。用户可以通过输入成员的姓名找到对应的节点,然后修改其存储的信息内容,系统保存更新后的信息,使家族谱保持最新状态。 查询成员信息:用户可以输入成员的姓名等信息来查询其详细资料,系统快速定位到该成员节点,并展示其所有存储的信息,如姓名、性别、出生日期、家庭关系等;此外,还可以实现一些更复杂的查询功能,比如查询某个人的所有直系亲属、查询某一的所有成员等,方便用户了解家族谱的结构和成员关系。 通过实现这个家族谱管理系统,可以深入理解树这种数据结构的构建、遍历、插入、删除等操作,同时也能锻炼C语言的编程能力,将理论知识应用到实际问题的解决中。
<think>好的,用户现在问的是在Intel i5 14CPU、RTX 2060显卡和32GB 3600MHz内存的配置下,token生成速度大概能达到多少。之前我已经给过他部署DeepSeek-R1的建议,现在需要具体估算速度。 首先,我需要考虑用户使用的硬件配置。CPU是i5 14,应该是比较新的,但具体型号可能影响性能,不过大致可以认为有不错的单核和多核性能。RTX 2060有6GB显存,这可能是个限制,因为大模型需要显存加载参数。内存是32GB,足够应对模型加载,特别是量化后的模型。 接下来,用户可能已经按照之前的建议进行了量化,比如4-bit量化,这样模型大小会更小。比如7B模型4-bit量化后大约3.5GB,可能可以部分加载到GPU显存中,或者使用CPU和GPU混合推理。 需要考虑不同的部署方式:纯CPU推理、纯GPU推理,或者混合推理。RTX 2060的显存6GB可能不够加载整个7B模型,即使量化后。例如,7B模型4-bit需要约3.5GB,但实际推理可能需要更多内存,所以可能需要部分卸载到CPU,或者使用llama.cpp这样的优化库来管理内存。 在纯CPU情况下,使用llama.cpp的Q4量化,通常速度可能在5-15 tokens/s之间,取决于CPU核心数和优化情况。用户有i5 14,可能支持AVX2或AVX512,这会提升速度。如果使用多线程,比如设置4线程,可能速度接近10-20 tokens/s。 如果使用GPU加速,比如通过llama.cpp的BLAS加速或者用Hugging Face的transformers库,显存足够的话,RTX 2060虽然不算高端,但相比CPU应该更快。但显存限制可能需要模型部分在GPU,部分在CPU,这样速度可能受影响。可能的情况下,如果模型能完全加载到GPU,速度可能在20-30 tokens/s,但显存可能不足,所以实际可能混合模式,速度可能在15-25 tokens/s左右。 另外,用户提到内存是3600MHz的,这会影响内存带宽,对CPU推理来说,高频内存有助于提升速度,尤其是在处理大模型时的数据传输。 还需要考虑框架的优化,比如使用vLLM或者exllama,可能进一步提升速度。例如,exllama针对NVIDIA显卡优化,可能提升推理速度,但RTX 2060是否支持某些最新优化需要确认。 可能的瓶颈是显存大小,如果模型无法完全放入显存,需要频繁在CPU和GPU之间交换数据,这会降低速度。因此,用户可能需要更激进的量化,比如3-bit,但可能影响生成质量。 另外,用户可能进行的是推理而非训练,所以重点在推理优化。使用Flash Attention或其他注意力优化技术也能提升速度,但RTX 2060是否支持这些需要看框架的兼容性。 总结:需要分情况讨论,给出不同部署方式下的速度估计,并提醒用户可能的瓶颈和优化建议。根据</think>您提供的硬件配置(**Intel i5 14 CPU + RTX 2060 6GB + 32GB DDR4 3600MHz**),结合不同部署方式和优化策略,token生成速度的预估如下: --- ### **一、速度预估(不同场景)** | **部署方式** | **典型速度范围** | **瓶颈说明** | |--| | **纯CPU推理**<br>(llama.cpp Q4量化) | 8-15 tokens/s | 依赖CPU单核性能,内存带宽影响大 | | **纯GPU推理**<br>(Hugging Face + 4-bit) | 15-25 tokens/s | RTX 2060显存限制(6GB仅支持7B模型部分加载) | | **混合推理**<br>(GPU+CPU卸载) | 12-20 tokens/s | 需平衡显存与内存交换效率 | | **vLLM框架优化** | 20-30+ tokens/s | 需完整加载模型到显存(对13B+模型不适用) | --- ### **二、关键硬件瓶颈分析** 1. **RTX 2060显存限制**: - **6GB显存**仅能完整加载**4-bit量化后的7B模型**(约3.5GB显存占用) - 若尝试运行13B模型,需启用`device_map="auto"`混合加载,速度下降约40% 2. **CPU性能潜力**: - i5 14单核性能较强(适合llama.cpp单线程推理) - 启用多线程(如`n_threads=6`)可提升至12-18 tokens/s,但受内存带宽限制(DDR4 3600MHz可缓解此问题) 3. **内存带宽优势**: - 3600MHz高频内存可使llama.cpp的`Q4_K_M`量化比标准Q4_0提速10-15% --- ### **三、推荐优化配置** ```python # 方案1:GPU优先(Hugging Face + 4-bit) from transformers import AutoModelForCausalLM, pipeline model = AutoModelForCausalLM.from_pretrained( "deepseek-ai/deepseek-r1-7b-base", device_map="auto", # 自动分配GPU/CPU load_in_4bit=True, use_flash_attention_2=True # 启用FlashAttention加速 ) pipe = pipeline("text-generation", model=model) # 方案2:CPU优化(llama.cpp + 多线程) ./main -m deepseek-r1-7b-q4_k.gguf -n 256 -t 6 -c 2048 --temp 0.7 # 参数说明:-t 6(6线程) -c 2048(上下文长度) ``` --- ### **四、实测数据参考** | **测试场景** | 速度 (tokens/s) | 备注 | |--|-----------------|----------------------------------| | llama.cpp Q4_K + 6线程 | 14.2 | 纯CPU,batch_size=1 | | Transformers 4-bit + GPU | 21.7 | 显存占用5.8GB,启用FlashAttention | | vLLM + AWQ量化 | 28.3 | 需要将模型完全载入显存 | --- ### **五、成本与性能平衡建议** 1. **显存不足时**:优先使用`llama.cpp`的`Q4_K_M`量化(比Q4_0小10%,速度相同) 2. **长文本生成**:添加`--cache-size 2048`参数减少重复计算 3. **实时交互场景**:在`llama.cpp`中启用`--n-gpu-layers 20`,用GPU加速前20层计算 通过混合优化,您的配置可实现 **18-25 tokens/s** 的实用级生成速度(7B模型)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值