北京Day 9

数学专场,本以为会垫底,然而T3数据出锅了……

今日得分:100+10+0(忘输出样例了)

T1

题目大意:有 n 个数字,a[1], a[2],…, a[n]。有一个集合,刚开始集合为空。每次向集合中加入一个数字或者删除一个数字。 每次操作给出一个下标 x,如果 a[x] 已经在集合中, 那么就删除 a[x], 否则就加入 a[x]。 问每次操作之后集合中互质的数字有多少对。

n<=100000,m<=100000,a[i]<=500000。

大佬们用莫比乌斯反演,然而我只会容斥

考虑每次操作对答案的贡献,发现对于每个质因数来说是容斥的关系,于是容斥一下就好了。

T1AC代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<queue>
#include<vector>
#include<cmath>
using namespace std;
inline int re_ad()
{
	int x=0,f=1;char ch=getchar();
	while(ch>'9'||ch<'0'){if(ch=='-')f=-1;ch=getchar();}
	while(ch>='0'&&ch<='9')x=x*10+ch-48,ch=getchar();
	return x*f;
}
void pu_t(long long x){if(x>9)pu_t(x/10);putchar(x%10+48);}
long long ans,an;
int n,q,sz;
int zs[500010],cnt=0,num[500010],a[100010];
vector<int>zys[100010];
bool vis[500010],fla[100010];
void ss()
{
	for(int i=2;i<=500000;i++)
	{
	if(!vis[i])zs[++cnt]=i;
	for(int j=1;j<=cnt&&i*zs[j]<=500000;j++)
	{vis[i*zs[j]]=1;if(i%zs[j]==0)break;
	}
	}
}
void change(int id,int nu,int i,int gb)
{
	if(id==sz){num[nu]+=gb;return;}
	change(id+1,nu,i,gb);change(id+1,nu*zys[i][id],i,gb);
}
void ask(int id,int nu,int i,int rc)
{
	if(id==sz){if(rc&1)an-=num[nu];else an+=num[nu];return;}
	ask(id+1,nu,i,rc);ask(id+1,nu*zys[i][id],i,rc+1);
}
int main()
{
	register int i,j,x,y;
	n=re_ad();q=re_ad();
	ss();
	for(i=1;i<=n;++i)a[i]=re_ad();
	for(i=1;i<=n;i++)
	{
	x=(int)sqrt(a[i]);
	y=a[i];j=1;
	while(y>1&&zs[j]<=x)
	{
	if(y%zs[j]==0){zys[i].push_back(zs[j]);while(y%zs[j]==0)y/=zs[j];}
	++j;
	}
	if(y>1)zys[i].push_back(y);
	}
	
	while(q--)
	{
	x=re_ad();sz=zys[x].size();an=0;
	if(!fla[x])
	{
	ask(0,1,x,0);
	change(0,1,x,1);
	ans+=an;
	fla[x]=true;
	}
	else
	{
	change(0,1,x,-1);
	ask(0,1,x,0);
	ans-=an;
	fla[x]=false;
	}
	pu_t(ans);putchar('\n');
	}
}

T2

题目大意:Fib(N) 表示斐波那契数列的第 N 项 F(0) = 0, F(1) = 1 ,给出 N 和 K,求 Fib(N) mod Fib(K)。输出 mod1000000007 的结果。 多组输入输出 N,K ≤ 10^18。

题解:

f(N)=f(k)*f(N-k-1)+f(k-1)*f(N-k)=f(k)*f(N-k-1)+f(k-1)*f(k-1)*f(N-k-k)……

i = ⌊N/K⌋       j = N mod K

f(N) (mod f(k)) = f(k-1)^i *f(j) (mod f(k))

f(k-1)^2 + f(k-1)*f(k) − f(k-1)^2 = (−1)^K

证明:考虑对 fib 的矩阵递推形式在等式两边同求行列式

f(n) (mod f(k)) = f(k-1)^i *f(j) (mod f(k))

现在只需要考虑 i 的奇偶性就可以了

i 是奇数的时候尝试引入 Fib 的负系数项 f(−N) = (−1)^(N-1) *f(N)

从 f(j) 中间再拆一个 f(k-1) 出来 于是问题变成了求某一个一定小于f(k) 的斐波那契项

矩阵快速幂

T2AC代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<queue>
#include<vector>
#include<cmath>
using namespace std;
inline long long re_ad()
{
	long long x=0;int f=1;char ch=getchar();
	while(ch>'9'||ch<'0'){if(ch=='-')f=-1;ch=getchar();}
	while(ch>='0'&&ch<='9')x=x*10+ch-48,ch=getchar();
	return x*f;
}
void pu_t(long long x){if(x<0) putchar('-'),x=-x;if(x>9)pu_t(x/10);putchar(x%10+48);}
const int mo=1000000007;
int T;
long long n,k;
struct node{long long g[3][3];}f,res;
inline void cheng(node x,node y,node &z)
{
	memset(z.g,0,sizeof(z.g));
	for(int i=1;i<=2;i++)
	for(int j=1;j<=2;j++)
	for(int k=1;k<=2;k++)
	z.g[i][k]=(z.g[i][k]+x.g[i][j]*y.g[j][k]%mo)%mo;
}
inline void ksm(long long k)
{
	node tmp=f,t;
	while(k)
	{
	if(k&1){cheng(res,tmp,t);res=t;}
	k>>=1;
	cheng(tmp,tmp,t);tmp=t;
	}
}
inline long long fi(long long x)
{
	if(x==0)return 0;
	x--;
	if(x<=1){return 1;}
	res=f;
	ksm(x-2);
	long long ret=(res.g[1][1]+res.g[2][1])%mo;
	return ret;
}
int main()
{
	long long x,y,fla;
	f.g[1][1]=1;f.g[1][2]=1;
	f.g[2][1]=1;f.g[2][2]=0;
	T=re_ad();
	while(T--)
	{
	n=re_ad();k=re_ad();
	if(n<k){pu_t(fi(n));putchar('\n');}
	if(n%k==0){pu_t(0);putchar('\n');continue;}
	if(n>k){
	x=n/k;y=n%k;
	if(x&1){x++;y-=k;}
	x>>=1;
	if(((x&1)&&(k&1))){fla=-1;}else fla=1;
	if(y<0){y=-y;if((y-1)&1)fla*=-1;}
	if(fla<0){fla=fi(k)-fi(y)+mo;fla%=mo;}
	else fla=fi(y);
	pu_t(fla);putchar('\n');
	}
	}
}

T3 luoguP4199 万径人踪灭

题目大意:求01序列不连续的回文串数量

题解:

考虑到不连续的回文串数量=所有的回文序列数量-连续的回文子串,连续的回文子串数量可以用manacher 得到

所有的回文序列:

将0看做1,1看做0,自己跟自己fft,得到以i/2为中心的由0构成的最长回文序列长度

再将0看做0,1看做1,自己跟自己fft,得到以i/2为中心的由1构成的最长回文序列长度

每一对以i为中心的对称位置要么同时选,要么同时不选

所以以i为中心的回文序列数量=2^((f[i]+1)/2)-1

T3AC代码

​#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<queue>
#include<vector>
#include<cmath>
using namespace std;
inline int re_ad()
{
	int x=0,f=1;char ch=getchar();
	while(ch>'9'||ch<'0'){if(ch=='-')f=-1;ch=getchar();}
	while(ch>='0'&&ch<='9')x=x*10+ch-48,ch=getchar();
	return x*f;
}
const int mo=1000000007;
char s[100010];
int n,P[200010],a[200010],li=1,cnt=0;
long long ans[200010],r[400010],an;
struct complex{
    double x,y;
    complex(double xx=0,double yy=0){x=xx;y=yy;}
    complex operator +(const complex &b){return complex(x+b.x,y+b.y);}
    complex operator -(const complex &b){return complex(x-b.x,y-b.y);}
    complex operator *(const complex &b){return complex(x*b.x-y*b.y,x*b.y+y*b.x);}
}A[400010],B[400010];
const double pi=acos(-1.0);
void fft(complex *a,double type){
    long long i,j,k,mid;complex x,y,w,wn;
    for(i=0;i<li;i++) if(i<r[i]) swap(a[i],a[r[i]]);
    for(mid=1;mid<li;mid<<=1){
        wn=complex(cos(pi/mid),type*sin(pi/mid));
        for(j=0;j<li;j+=(mid<<1)){
            w=complex(1,0);
            for(k=0;k<mid;k++,w=w*wn){
                x=a[j+k];y=w*a[j+k+mid];
                a[j+k]=x+y;a[j+k+mid]=x-y;
            }
        }
    }
}
inline long long ksm(long long a,long long b)
{
	long long ret=1;while(b){if(b&1)ret=ret*a%mo;b>>=1;a=a*a%mo;}return ret;
}
int main()
{
	register int i,j,k,len=0,id=0,mx=0;
	scanf("%s",s+1);
	n=strlen(s+1);
	a[0]=-1;
	for(i=1;i<=n;i++)a[++len]=2,a[++len]=s[i]-48;
	a[++len]=2;a[len+1]=-2;
	while(li<=(n<<1)){li<<=1;cnt++;}
	for(i=0;i<li;i++)r[i]=(r[i>>1]>>1)|((i&1)<<(cnt-1));
	for(i=1;i<=n;i++)A[i].x=B[i].x=a[i<<1];
	fft(A,1);fft(B,1);
	for(i=0;i<li;i++)A[i]=A[i]*B[i];
	fft(A,-1);
	for(i=1;i<=len;i++)ans[i]+=1ll*(A[i].x/li+0.5)-((i&1)^1);
	memset(A,0,sizeof(A));memset(B,0,sizeof(B));
	for(i=1;i<=n;i++)A[i].x=B[i].x=a[i<<1]^1;
	fft(A,1);fft(B,1);
	for(i=0;i<li;i++)A[i]=A[i]*B[i];
	fft(A,-1);
	for(i=1;i<=len;i++)ans[i]+=1ll*(A[i].x/li+0.5)-((i&1)^1);
	for(i=1;i<=len;i++)ans[i]=((ans[i]+((i&1)^1))>>1)+((i&1)^1);
	for(i=1;i<=len;i++)ans[i]=(ksm(2,ans[i])-1)%mo;
	for(i=1;i<=len;i++)
	{
	if(i<mx){P[i]=min(P[(id<<1)-i],mx-i);}
	else P[i]=1;
	while(a[i+P[i]]==a[i-P[i]])++P[i];
	if(i+P[i]>mx){id=i;mx=i+P[i];}
	}
	for(i=1;i<=len;i++)ans[i]=(ans[i]-(P[i]>>1)+mo)%mo,an=(an+ans[i])%mo;/**/
	cout<<an<<endl;
}

​

 

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
智慧校园建设方案旨在通过融合先进技术,如物联网、大数据、人工智能等,实现校园的智能化管理与服务。政策的推动和技术的成熟为智慧校园的发展提供了基础。该方案强调了数据的重要性,提出通过数据的整合、开放和共享,构建产学研资用联动的服务体系,以促进校园的精细化治理。 智慧校园的核心建设任务包括数据标准体系和应用标准体系的建设,以及信息化安全与等级保护的实施。方案提出了一站式服务大厅和移动校园的概念,通过整合校内外资源,实现资源共享平台和产教融合就业平台的建设。此外,校园大脑的构建是实现智慧校园的关键,它涉及到数据中心化、数据资产化和数据业务化,以数据驱动业务自动化和智能化。 技术应用方面,方案提出了物联网平台、5G网络、人工智能平台等新技术的融合应用,以打造多场景融合的智慧校园大脑。这包括智慧教室、智慧实验室、智慧图书馆、智慧党建等多领域的智能化应用,旨在提升教学、科研、管理和服务的效率和质量。 在实施层面,智慧校园建设需要统筹规划和分步实施,确保项目的可行性和有效性。方案提出了主题梳理、场景梳理和数据梳理的方法,以及现有技术支持和项目分级的考虑,以指导智慧校园的建设。 最后,智慧校园建设的成功依赖于开放、协同和融合的组织建设。通过战略咨询、分步实施、生态建设和短板补充,可以构建符合学校特色的生态链,实现智慧校园的长远发展。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值