一、优化器的逻辑
🏁:1.优化器选择索引的目的,是找到一个最优的执行方案,并用最小的代价去执行语句。那么影响执行代价的重要因素是什么?
- 扫描行数。为什么呢?扫描的行数越少,意味着访问磁盘数据的次数越少,消耗的 CPU 资源越少。
- 优化器还会结合是否使用临时表
- 是否排序等因素进行综合判断
🏁:2.什么是索引的区分度?什么是基数?什么命令能看到一个表索引的区分度?
- 一个索引上不同的值的占比情况成为区分度。
- 一个索引上不同的值的个数,我们称之为“基数”(cardinality)
- show index from t;
🏁:3.MySQL 是怎样得到索引的基数的呢?基数会发生变化么?什么时候发生变化?基数的统计中N和M的值是在什么命令中体现的?
- 抽样统计。InnoDB 默认会选择 N 个数据页,统计这些页面上的不同值,得到一个平均值,然后乘以这个索引的页面数,就得到了这个索引的基数
- 会
- 当变更的数据行数超过 1/M 的时候,会自动触发重新做一次索引统计(M是指基数)
- MySQL 中,有两种存储索引统计的方式,可以通过设置参数 innodb_stats_persistent 的值来选择:设置为 on 的时候,表示统计信息会持久化存储。这时,默认的 N 是 20,M 是 10。设置为 off 的时候,表示统计信息只存储在内存中。这时,默认的 N 是 8,M 是 16。
知晓了优化器统计的方式后我们接着上一节的例子看一个情况(PS:上一节是引子)
🏁:4.rows 这个字段表示的是预计扫描行数。优化器为什么放着扫描 37000 行的执行计划不用,却选择了扫描行数是 100000 的执行计划呢?
因为,如果使用索引 a,每次从索引 a 上拿到一个值,都要回到主键索引上查出整行数据,这个代价优化器也要算进去的。而如果选择扫描 10 万行,是直接在主键索引上扫描的,没有额外的代价。
⚠️:重点 重点 重点
上图中为什么删除后又新增,强制使用索引,扫描数变成了37116呢?
答:因为另一个事务仍未提交,因此删除的数据只是标记删除,数据仍然在数据页中,后插入的数据需要找新的空位插入,这样查询时会扫描删除的数据+后插入的数据,同时算上回表扫描主键索引,因此扫描行数达到3万7千行
⭐️:5.如何修正重新统计索引信息
使用 analyze table table_name 命令,重新统计索引信息,解决采样导致的扫描行数出错的问题。
⚠️:如果只是索引统计不准确,通过 analyze 命令***可以***解决很多问题
🤔️ 又一个问题正在蹦来~
mysql> select * from t where (a between 1 and 1000) and (b between 50000 and 100000) order by b limit 1;
在开始执行这条语句之前,你可以先设想一下,如果你来选择索引,会选择哪一个呢?
如果用a索引,扫描索引 a 的前 1000 个值,回表根据b过滤,扫描1001
如果用b索引,扫描索引 b 的最后 50001 个值,回表根据b过滤,扫描50001
如果我们来选,用索引a一定会快!但是explain看下
❗️这次优化器选择了索引 b,而 rows 字段显示需要扫描的行数是 50198。
又双有错了
🏁:5.如果像这种碰到索引选择异常了我们如何做呢?
- 一种方法是,像我们第一个例子一样,采用 force index 强行选择一个索引。
- 第二种方法就是,我们可以考虑修改语句,引导 MySQL 使用我们期望的索引。
- 第三种方法是,在有些场景下,我们可以新建一个更合适的索引,来提供给优化器做选择,或删掉误用的索引。
🏁:5.1.使用 force index缺点是什么?
一来这么写不优美,二来如果索引改了名字,这个语句也得改,对于生产系统来说,这个过程不够敏捷。
👋:5.2.如何修改上述语句引导MySQL?
把“order by b limit 1” 改成 “order by b,a limit 1”。
解释:
之前优化器选择使用索引 b,是因为它认为使用索引 b 可以避免排序(b 本身是索引,已经是有序的了,如果选择索引 b 的话,不需要再做排序,只需要遍历),所以即使扫描行数多,也判定为代价更小。现在 order by b,a 这种写法,要求按照 b,a 排序,就意味着使用这两个索引都需要排序。因此,扫描行数成了影响决策的主要条件,于是此时优化器选了只需要扫描 1000 行的索引 a。
二、总结
- 对于由于索引统计信息不准确导致的问题,你可以用 analyze table 来解决。
- 而对于其他优化器误判的情况,你可以在应用端用 force index 来强行指定索引,也可以通过修改语句来引导优化器,还可以通过增加或者删除索引来绕过这个问题。
三、思考题
通过 session A 的配合,让 session B 删除数据后又重新插入了一遍数据,然后就发现 explain 结果中,rows 字段从 10001 变成 37000 多。
而如果没有 session A 的配合,只是单独执行 delete from t 、call idata()、explain 这三句话,会看到 rows 字段其实还是 10000 左右。你可以自己验证一下这个结果。这是什么原因呢?
答案:
delete 语句删掉了所有的数据,然后再通过 call idata() 插入了 10 万行数据,看上去是覆盖了原来的 10 万行。但是,session A 开启了事务并没有提交,所以之前插入的 10 万行数据是不能删除的。这样,之前的数据每一行数据都有两个版本,旧版本是 delete 之前的数据,新版本是标记为 deleted 的数据。这样,索引 a 上的数据其实就有两份。然后你会说,不对啊,主键上的数据也不能删,那没有使用 force index 的语句,使用 explain 命令看到的扫描行数为什么还是 100000 左右?(潜台词,如果这个也翻倍,也许优化器还会认为选字段 a 作为索引更合适)是的,不过这个是主键,主键是直接按照表的行数来估计的。而表的行数,优化器直接用的是 show table status 的值。