给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。
你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。
返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回 0 。
贪心:
class Solution {
public:
int maxProfit(vector<int>& prices) {
int low=INT_MAX;
int result=0;
for(int i=0;i<prices.size();i++){
low=min(prices[i],low);
result=max(result,prices[i]-low);
}
return result;
}
};
动态规划:
注意这里的递推关系式:
//到下标i未持有,有两种可能:1.下标i-1就未持有;2.i-1持有到i时卖了
dp[i][0]=max(dp[i-1][0],dp[i-1][1]+prices[i]);
//到下标i持有,有两种情况:1.下标i-1就持有;2.i-1未持有到i时买了
dp[i][1]=max(dp[i-1][1],-prices[i]);
特别是i-1未持有,i时才买,由于本题只能买卖一次,所以直接-prices[i]就行。
如果可以买卖多次的话,就应该写成:
dp[i][1]=max(dp[i-1][1],dp[i-1][0]-prices[i]);
class Solution {
public:
int maxProfit(vector<int>& prices) {
//二维数组
vector<vector<int>> dp(prices.size(),vector<int> {INT_MIN,INT_MIN});
//dp[i][0]表示到下标j时未持有股票最多现金
//dp[i][1]表示到下标j时持有该股票最多现金
//初始化
if(prices.size()==1) return 0;
dp[0][0]=0;
dp[0][1]=-prices[0];
for(int i=1;i<prices.size();i++){
//到下标i未持有,有两种可能:1.下标i-1就未持有;2.i-1持有到i时卖了
dp[i][0]=max(dp[i-1][0],dp[i-1][1]+prices[i]);
//到下标i持有,有两种情况:1.下标i-1就持有;2.i-1未持有到i时买了
dp[i][1]=max(dp[i-1][1],-prices[i]);
}
return max(dp[prices.size()-1][0],dp[prices.size()-1][1]);
}
};