【20230316】【每日一题】买卖股票的最佳时机

文章介绍了如何使用贪心算法和动态规划解决寻找股票交易中能获取的最大利润问题。在贪心算法中,通过保持一个最低价格记录来计算最大利润。而在动态规划解决方案中,通过二维数组dp来跟踪未持有和持有股票的状态,以确定最大收益。
摘要由CSDN通过智能技术生成

给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。

你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。

返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回 0 。


贪心:

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int low=INT_MAX;
        int result=0;
        for(int i=0;i<prices.size();i++){
            low=min(prices[i],low);
            result=max(result,prices[i]-low);
        }
        return result;
    }
};

动态规划:

注意这里的递推关系式:

//到下标i未持有,有两种可能:1.下标i-1就未持有;2.i-1持有到i时卖了

dp[i][0]=max(dp[i-1][0],dp[i-1][1]+prices[i]);

//到下标i持有,有两种情况:1.下标i-1就持有;2.i-1未持有到i时买了

dp[i][1]=max(dp[i-1][1],-prices[i]);

特别是i-1未持有,i时才买,由于本题只能买卖一次,所以直接-prices[i]就行。

如果可以买卖多次的话,就应该写成:

dp[i][1]=max(dp[i-1][1],dp[i-1][0]-prices[i]);

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        //二维数组
        vector<vector<int>> dp(prices.size(),vector<int> {INT_MIN,INT_MIN});
        //dp[i][0]表示到下标j时未持有股票最多现金
        //dp[i][1]表示到下标j时持有该股票最多现金
        //初始化
        if(prices.size()==1)    return 0;
        dp[0][0]=0;
        dp[0][1]=-prices[0];
        for(int i=1;i<prices.size();i++){
            //到下标i未持有,有两种可能:1.下标i-1就未持有;2.i-1持有到i时卖了
            dp[i][0]=max(dp[i-1][0],dp[i-1][1]+prices[i]);
            //到下标i持有,有两种情况:1.下标i-1就持有;2.i-1未持有到i时买了
            dp[i][1]=max(dp[i-1][1],-prices[i]);
        }                                                 
        return max(dp[prices.size()-1][0],dp[prices.size()-1][1]);              
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值