人脸表情识别:RAF_DB数据集预处理

RAF_DB数据集下载:RAF-DB_数据集-飞桨AI Studio星河社区 (baidu.com)

basic:单一表情——7种

compound:复合表情——11种

两者均给出了初始数据集和人脸对齐后的数据集;

数据集到手存在train和test未分开的情况,且每种表情并未分类按文件夹存放。官方给出了每张图片对应的表情txt文件;

设计代码实现数据集的train和test的分类,并按图片标签进一步分类存放图片,以basic original文件夹下的数据集为例,其他同理,代码如下(建议在 Jupyter Notebook 逐块运行): 

import os,shutil
#将txt转换成list,按组存放
listfile = open('RAF_basic/list_patition_label.txt', 'r') #你list_patition_label对应位置
js = listfile.read()
list1 = js.split()
result = []
for i in range(0,len(list1)-1,2):
    result.append(list1[i:i+2])
#     print(result)
listfile.close()
#将train和test数据集分到两个文件夹下
files_list = os.listdir('RAF_basic/original/')#以original为例

initial=os.getcwd()#获取当前所在文件夹位置
workpath=os.path.join(initial,'RAF_basic')
datapath=os.path.join(workpath,'original')#有点冗余,嫌麻烦就没改了
for file in files_list:
    datatype = file.split('_')[0]#对图片文件名进行分割,取test/train
    os.chdir(datapath)#进入目标文件夹
    if not os.path.exists(datatype):
        os.mkdir(datatype)
    shutil.move(file,datatype)#移动,注意移动时必须在目标文件夹下
            
os.chdir(initial)#回到初始文件夹下,如果不回在jupyter notebook下重复运行可能报错

修改记录:对于aligned人脸对齐数据集中图片名称多出aligned问题,做出改进,删除aligned部分再进行匹配。 

#分别将test和train文件夹下的图片按txt中的标签进行分类存放
test_list = os.listdir('RAF_basic/original/test/')
train_list = os.listdir('RAF_basic/original/train/')
#对test进行分类
for file in test_list:
    for j in range(len(result)):

#aligned用     
#         file_m=str(file.split('_')[0])+'_'+str(file.split('_')[1])+'.jpg'
#         if file_m == result[j][0]:#文件名与txt中匹配
#original用
        if file == result[j][0]:#文件名与txt中匹配
        
            os.chdir(os.path.join(datapath,'test'))#进入指定文件夹
            if not os.path.exists(result[j][1]):
                os.mkdir(result[j][1])#没有文件夹就创建
            shutil.move(file,result[j][1])#移动
#对train进行分类
for file in train_list:
    for j in range(len(result)):

#aligned用   
#         file_m=str(file.split('_')[0])+'_'+str(file.split('_')[1])+'.jpg'
#         if file == result[j][0]:

#original用
        if file == result[j][0]:

            os.chdir(os.path.join(datapath,'train'))
            if not os.path.exists(result[j][1]):
                os.mkdir(result[j][1])
            shutil.move(file,result[j][1])
os.chdir(initial)
基于CNN卷积神经网络和RAF-DB数据集实现人脸表情识别python源码+训练好的模型+使用说明(准确率99.9%).zip 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载!欢迎交流学习!不清楚的可以私信问我! 基于CNN卷积神经网络和RAF-DB数据集实现人脸表情识别python源码+训练好的模型+使用说明(准确率99.9%).zip 环境部署 推荐使用conda虚拟环境 ``` csdn 下载后解压重命名为FacialExpressionRecognition cd FacialExpressionRecognition conda create -n FER python=3.8 -y conda activate FER pip install torch==1.12.0 gradio==4.29.0 torchvision==0.13.0 opencv-python==3.4.15.55 h5py==3.11.0 ``` 演示 预训练模型已经传到百度网盘,[连接](https://pan.baidu.com/s/1-0HyQoiX9Bmz7IsHid4-Cg )给出,提取码:7i8j。下载后将模型放入`RAF_`文件夹下。然后`python visualize_pro.py` FRA-DB数据集 来自[这里](https://paperswithcode.com/sota/facial-expression-recognition-on-raf-db),RAF-DB数据集由100*100的rgb图像组成,它包含 29672 张面部图像.每个图像包含7个不同情绪的图像。 下载完成后,运行`python preprocess_RAF+.py`进行图片预处理,生成h5文件 训练和评估 `python mainpre_RAF.py --bs 128 --lr 0.003` `python visualize_pro.py`
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值