人脸表情识别:RAF_DB数据集预处理

RAF_DB数据集下载:RAF-DB_数据集-飞桨AI Studio星河社区 (baidu.com)

basic:单一表情——7种

compound:复合表情——11种

两者均给出了初始数据集和人脸对齐后的数据集;

数据集到手存在train和test未分开的情况,且每种表情并未分类按文件夹存放。官方给出了每张图片对应的表情txt文件;

设计代码实现数据集的train和test的分类,并按图片标签进一步分类存放图片,以basic original文件夹下的数据集为例,其他同理,代码如下(建议在 Jupyter Notebook 逐块运行): 

import os,shutil
#将txt转换成list,按组存放
listfile = open('RAF_basic/list_patition_label.txt', 'r') #你list_patition_label对应位置
js = listfile.read()
list1 = js.split()
result = []
for i in range(0,len(list1)-1,2):
    result.append(list1[i:i+2])
#     print(result)
listfile.close()
#将train和test数据集分到两个文件夹下
files_list = os.listdir('RAF_basic/original/')#以original为例

initial=os.getcwd()#获取当前所在文件夹位置
workpath=os.path.join(initial,'RAF_basic')
datapath=os.path.join(workpath,'original')#有点冗余,嫌麻烦就没改了
for file in files_list:
    datatype = file.split('_')[0]#对图片文件名进行分割,取test/train
    os.chdir(datapath)#进入目标文件夹
    if not os.path.exists(datatype):
        os.mkdir(datatype)
    shutil.move(file,datatype)#移动,注意移动时必须在目标文件夹下
            
os.chdir(initial)#回到初始文件夹下,如果不回在jupyter notebook下重复运行可能报错

修改记录:对于aligned人脸对齐数据集中图片名称多出aligned问题,做出改进,删除aligned部分再进行匹配。 

#分别将test和train文件夹下的图片按txt中的标签进行分类存放
test_list = os.listdir('RAF_basic/original/test/')
train_list = os.listdir('RAF_basic/original/train/')
#对test进行分类
for file in test_list:
    for j in range(len(result)):

#aligned用     
#         file_m=str(file.split('_')[0])+'_'+str(file.split('_')[1])+'.jpg'
#         if file_m == result[j][0]:#文件名与txt中匹配
#original用
        if file == result[j][0]:#文件名与txt中匹配
        
            os.chdir(os.path.join(datapath,'test'))#进入指定文件夹
            if not os.path.exists(result[j][1]):
                os.mkdir(result[j][1])#没有文件夹就创建
            shutil.move(file,result[j][1])#移动
#对train进行分类
for file in train_list:
    for j in range(len(result)):

#aligned用   
#         file_m=str(file.split('_')[0])+'_'+str(file.split('_')[1])+'.jpg'
#         if file == result[j][0]:

#original用
        if file == result[j][0]:

            os.chdir(os.path.join(datapath,'train'))
            if not os.path.exists(result[j][1]):
                os.mkdir(result[j][1])
            shutil.move(file,result[j][1])
os.chdir(initial)
RAF-DB(Ryerson Audio-Visual Database of Emotional Speech and Song)是一个用于情绪语音和情绪歌曲研究的数据库,由加拿大拉瑞森大学的研究团队创建。该数据库包含多个参与者在表达七种不同情绪(高兴、悲伤、愤怒、恐惧、惊讶、厌恶和中性)时的语音和歌曲音频。 为了下载RAF-DB数据集,您可以按照以下步骤进行操作: 1. 打开RAF-DB官方网站。您可以在网络搜索引擎中搜索"RAF-DB数据库下载",找到官方网站的链接。 2. 寻找数据集下载页面。一旦打开官方网站,浏览页面,查找数据集的下载页面。这个页面可能位于网站的“数据集”或“下载”部分。 3. 确定数据集下载选项。在数据集下载页面上,可能会提供多种下载选项,例如完整数据集或特定情绪的子集。请选择您所需的数据集类型。 4. 选择下载格式。RAF-DB通常提供多种下载格式,如WAV、MP3等。根据您的需求选择适当的格式。 5. 点击下载链接。一旦选择了所需的数据集类型和格式,点击相应的下载链接即可开始下载。下载时间将取决于您的互联网连接速度和文件大小。 请注意,下载RAF-DB数据集可能需要您遵守一些使用条款和条件,如必须进行适当的引用、仅用于学术研究、不得用于商业用途等。在下载之前,确保您理解并遵守这些条款和条件。 以上是关于如何下载RAF-DB数据集的简要说明,希望对您有所帮助。如有进一步的问题,请继续提问。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值