知识图谱:从0到 ∞
文章平均质量分 88
知识图谱:从0到 ∞
胡耀超
这个作者很懒,什么都没留下…
展开
-
知识图谱入门——11:构建动态图谱渲染应用:Vue3与Neo4j的集成与实践
这篇博客将带你深入了解如何利用Vue.js、D3.js以及Neo4j,开发一个能够实时渲染图谱节点和关系的应用。我们将从零开始,介绍如何搭建开发环境、安装依赖、与Neo4j数据库交互、到最终的图谱可视化实现(为方便演示,服务端先不搭建)。原创 2024-10-07 18:25:18 · 1495 阅读 · 0 评论 -
知识图谱入门——10:使用 spaCy 进行命名实体识别(NER)的进阶应用:基于词袋的实体识别与知识抽取
本文将详细探讨如何在 spaCy 中实现自定义实体抽取,包括使用词袋、批量添加模式、加载外部文件、使用自定义组件和结合正则表达式进行复杂匹配。原创 2024-10-05 17:57:25 · 843 阅读 · 0 评论 -
知识图谱入门——9: spaCy中命名实体识别(NER)任务中的预定义标签详解及案例(GPE、MONEY、PRODUCT、LAW、FAC、NORP是什么?)
在这篇文章中,我们将系统地介绍 spaCy 中命名实体识别的常见 **预定义标签**,并探讨这些标签在实际应用中的意义。以及案例修改标签原创 2024-10-05 17:19:46 · 1500 阅读 · 0 评论 -
知识图谱入门——8: KG开发常见数据格式:OWL、RDF、XML、GraphML、JSON、CSV。
在知识图谱开发中,数据格式和语义表达至关重要。本文将详细论述OWL、RDF、XML、GraphML、JSON、CSV等格式的特点、优缺点及适用场景,帮助读者全面理解这些数据结构及其在知识图谱中的应用。原创 2024-10-04 16:08:59 · 1355 阅读 · 0 评论 -
知识图谱入门——7:阶段案例:使用 Protégé、Jupyter Notebook 中的 spaCy 和 Neo4j Desktop 搭建知识图谱
在 Windows 环境中结合使用 **Protégé**、**Jupyter Notebook** 中的 **spaCy** 和 **Neo4j Desktop**,可以高效地实现从自然语言处理(NLP)到知识图谱构建的全过程。本案例将详细论述环境配置、步骤实现以及一些扩展和不足之处。原创 2024-10-04 15:08:38 · 1486 阅读 · 0 评论 -
知识图谱入门——6:Cypher 查询语言高级组合用法(查询链式操作、复杂路径匹配、条件逻辑、动态模式创建,以及通过事务控制和性能优化处理大规模数据。
这些组合用法涉及**查询链式操作**、**复杂路径匹配**、**条件逻辑**、**动态模式创建**,以及通过**事务控制和性能优化**处理大规模数据。原创 2024-10-03 16:15:41 · 1140 阅读 · 0 评论 -
知识图谱入门——5:Neo4j Desktop安装和使用手册(小白向:Cypher 查询语言:逐步教程!Neo4j 优缺点分析)
知识图谱入门——5:Neo4j Desktop安装和使用手册(小白向:Cypher 查询语言:逐步教程!Neo4j 优缺点分析)原创 2024-10-03 16:19:22 · 2175 阅读 · 0 评论 -
知识图谱入门——4:Protégé 5.6.4安装和主要功能介绍、常用插件(2024年10月2日):知识图谱构建的利器
知识图谱入门——4:Protégé 5.6.4安装和主要功能介绍、常用插件(2024年10月2日):知识图谱构建的利器原创 2024-10-02 15:41:09 · 1371 阅读 · 4 评论 -
知识图谱入门——3:工具分类与对比(知识建模工具:Protégé、 知识抽取工具:DeepDive、知识存储工具:Neo4j)
构建知识图谱是一个复杂的过程,从知识建模、抽取到存储,每个环节都需要合适的工具。选择时需要结合项目的具体需求和技术要求。如果你的项目涉及初学者学习或中小型项目,Protégé和Neo4j的组合会是不错的开始;如果需要更复杂的推理和大规模数据处理,DeepDive或等工具则更加适合。原创 2024-10-02 13:01:44 · 1551 阅读 · 0 评论 -
知识图谱入门——2:技术体系基本概念:知识表示与建模、知识抽取与挖掘、知识存储与融合、知识推理与检索
知识图谱的构建从表示、抽取到推理,是一个系统性的过程。对于刚入门的开发者,理解基本概念和掌握常用工具是学习知识图谱的第一步。原创 2024-10-01 20:53:30 · 454 阅读 · 0 评论 -
知识图谱入门——1:基本概念、为什么要用?核心步骤、常用工具与技术、应用场景
知识图谱是一种用来表示事物及其关系的结构化方式,它通过节点(实体)和边(关系)将数据连接成网状结构,使得计算机可以更好地理解和处理复杂信息。想象一下,在一张地图上画出每个城市(实体)和它们之间的道路(关系),这就是知识图谱的基本理念。原创 2024-10-01 20:30:30 · 1010 阅读 · 0 评论