7-39 抽卡游戏 (30分) 本题的灵感来源于一个古典的概率模型。 AliceAliceAlice 在一个卡池里抽卡,里面有 xxx 张 sss 卡和 yyy 张 aaa 卡。 AliceAlice

7-39 抽卡游戏 (30分)

本题的灵感来源于一个古典的概率模型。
AliceAliceAlice 在一个卡池里抽卡,里面有 xxx 张 sss 卡和 yyy 张 aaa 卡。
AliceAliceAlice 每次会不放回的随机从卡池中抽出一张卡。
BobBobBob 在一旁看 AliceAliceAlice 抽卡并对每次的结果进行预测:
若卡池里 sss 卡的数量多于 aaa 卡,BobBobBob 会猜 AliceAliceAlice 抽出 sss 卡。
反之则会猜测 AliceAliceAlice 抽出 aaa 卡。
但是如果当卡池里的两种卡的数量相等的时候,BobBobBob 就不对抽卡的结果做任何的猜测了。AliceAliceAlice 会一直抽卡,直到卡池空为止。
现在告诉你初始的时候卡池里 sss 卡和 aaa 卡的数量,你能算算 BobBobBob 期望下猜对多少次?
输入格式:在一行中给出两个整数 a,b(1≤a,b≤105)a,b(1 <=a,b <=10^5)a,b(1≤a,b≤10​5​​)输出格式:一个实数表示期望,四舍五入保存两位小数。

输入样例:1 1

输出样例:1.00

该题目其实很简单 答案就是max(a,b);
证明如下,我们令Ex(a,b)表示相应的期望。
Ex(1,1) = 1; Ex(1,2) = Ex(2,1) = 2/3+(2/3)*(0+1)+(1/3)*(1+1) = 2;
EX(a,b) =(a/a+b)+ (a/a+b)*Ex(a-1,b)+(b/a+b)*Ex(a,b-1)//假设a>b;
数学归纳法:Ex(a-1,b) = a-1;Ex(a,b-1) = b-1;
EX(a,b) =(a/a+b)+ (a/a+b)*(a-1)+(b/a+b)*a = a(a+b)/(a+b) = a;
同理当a = b 或 a < b证法相同
#include<bits/stdc++.h>
using namespace std;
int main(){
 double a,b;
 cin>>a>>b;
 printf("%.2lf",a>b?a:b);
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值