题意:有一个n个珠子的项链要涂色,给出了n个珠子要涂得颜色,给一段连续的珠子涂色的花费是颜色数量k的平方,问最少花费。
题解:dp,f[i]表示前i个珠子涂色的最小花费,f[i] = f[j] + num[j + 1, i] ^ 2,对于一个颜色p[i],如果没有出现过,那就是f[i] = f[i - 1] + 1,出现过的话就要重新划分区间找到最小值,划分区间用了两个数组pre[j]和ne[j]表示位置j的前一个和后一个可能划分出最优解的位置,然后遍历pre[i]寻找最优解,f[i] = min{f[i],f[j] + cnt * cnt}。
#include <stdio.h>
#include <algorithm>
#include <map>
#include <string.h>
using namespace std;
const int N = 50005;
const int INF = 0x3f3f3f3f;
int p[N], n, f[N], pre[N], ne[N];
map<int, int> m;
int main() {
while (scanf("%d", &n) == 1) {
m.clear();
for (int i = 1; i <= n; i++) {
scanf("%d", &p[i]);
pre[i] = i - 1;
ne[i] = i + 1;
}
memset(f, INF, sizeof(f));
f[0] = 0;
pre[0] = -1;
for (int i = 1; i <= n; i++) {
if (!m[p[i]])
m[p[i]] = i;
else {
int temp = m[p[i]];
ne[pre[temp]] = ne[temp];
pre[ne[temp]] = pre[temp];
m[p[i]] = i;
}
int cnt = 0;
for (int j = pre[i]; j != -1; j = pre[j]) {
cnt++;
f[i] = min(f[i], f[j] + cnt * cnt);
if (cnt * cnt > i)
break;
}
}
printf("%d\n", f[n]);
}
return 0;
}