题意:有一棵树,n个点,n-1条边每条边有一个权值,有三种操作,query a b,询问a到b所有路径的最大权值,negate a b,把a到b所有路径权值设置为对应权值的相反数,change a b,把第a条边权值设为b。
题解:线段树维护最大值和最小值,negate a b的时候把对应区间最大最小值交换并取反,注意要用一个标记每个区间取反的次数,因为偶数次取反相当于不变。
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 10005;
const int INF = 0x3f3f3f3f;
struct Edge {
int u, v, w, nxt;
Edge() {}
Edge(int a, int b, int c, int d): u(a), v(b), w(c), nxt(d) {}
}e[N << 1];
int size[N], son[N], fa[N], top[N], id[N], dep[N];
int n, cnt, tot, head[N], minn[N << 2], maxx[N << 2], flag[N << 2];
void AddEdge(int u, int v, int w) {
e[cnt] = Edge(u, v, w, head[u]);
head[u] = cnt++;
e[cnt] = Edge(v, u, w, head[v]);
head[v] = cnt++;
}
void dfs2(int u, int tp) {
top[u] = tp;
id[u] = ++tot;
if (son[u]) dfs2(son[u], tp);
for (int i = head[u]; i + 1; i = e[i].nxt) {
int v = e[i].v;
if (v == fa[u] || v == son[u]) continue;
dfs2(v, v);
}
}
void