2 CBP业务建模技术:基于能力的业务模式转换

本文介绍了基于能力的规划(CBP)技术在业务建模中的应用,特别是如何利用CBP对ChatGPT的能力进行建模。通过元模型、能力-资源映射和资源-能力模型,揭示了ChatGPT的能力结构,包括主要能力、所需资源及其支持的子能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

基于能力的规划(CBP)

基于能力的业务模式转换

元模型

基本概念

能力-流程映射:

能力-资源模型

资源-能力模型

建模步骤 

ChatGPT能力架构建模


常见的业务建模方法包括流程分析技术、基于能力的规划(CBP)技术、业务场景技术和业务用例分析技术等。本文介绍的是CBP技术的其中一种。

本文以最近很火的ChatGPT为例进行建模。ChatGPT的背景知识和本文的上下文见本期公众号的第一篇文章。如本期公众号第一篇文章所言,复制ChatGPT是一个很困难的事情,需要大量的资金的投入,已经远远超过了一般企业的承受能力。

尽管如此,我们还是要有理有据的告诉老板我们的分析过程。这里我们可以用基于能力的业务规划技术(CBP)。

基于能力的规划(CBP)

关于能力的基本概念请我之前的一些文章(《理解功能、业务功能和能力》)。能力最常用的情境是基于能力的规划。基于能力的规划(CBP)聚焦于向企业规划、设计和交付能力。换言之,基于能力的规划是一种面向能力的投资规划技术,这些能力有助于实现特定的组织战略。这些投资通常表现为业务或技术的优化项目。

由于能力组件可以在不同级别和维度上抽象,可以包含组织、流程、资源、治理等概念,所以基于能力的规划技术有很多细分的领域,例如CBM是从组织和流程维度对能力进行建模。本文介绍的方法侧重于从资源的维度对能力进行建模。

基于能力的业务模式转换

《基于能力的业务模式转换》(以下简称该模型)由stockholm大学的Martin Henkel, Ilia Bider, Erik Perjons提出。

该模型是一种业务建模方法,可以帮助组织发现和描述其所有能力,包括正在使用的资源。

该模型允许组织重组其能力,以实现新的业务模式,并找出应该添加哪些新能力,以及要删除哪些现有能力。

元模型

首先我们看一下这个模型的元模型。元模型是模型的模型,也就是对模型的描述(关于元模型的更多知识,请见我之前的文章《你真的理解模型和元模型吗?》)。元模型有助于我们理解模型的基本概念和概念之间的关系。

该模型中的主要概念的是能力和资源,其中能力按粒度分为主能力和子能力,其中主能力对应的是由企业最顶层价值流实现的。

该模型的主能力被一组资源实现,进一步资源需要通过一组子能力来获取、维持和退出,最后子能力同样需要被资源来实现。

元模型中能力-资源这组关系在不同粒度上建模,正向和反向各应用了一次,这是一种迭代的思路,也是业务建模中常见的方法。

基本概念

能力-流程映射:

该模型的第一步是建立自己术语空间(关于术语空间的概念见《理解影响架构语言的因素》)。该术语空间对如下两个概念进行了映射:

  • 流程->能力

  • 资产->资源

能力具有多个维度,在该模型中重点关注的是能力的资源属性。所以该模型中将我们常见的流程组件映射为能力组件,因为流程总是映射为能力(N:1或1:1)。

资产这个概念通常比较强调“硬资产”,如货币、土地、厂房、资料等。在业务架构中,资源的含义更为广泛,除了“硬资产”还包括策略、文化这种“软资产”。

该模型中,流程和能力不严格区分,资产和资源不严格区分,后者是该模型推荐的叫法。

能力-资源模型

能力-资源模型将能力所需的资源分为6种类型。

  • 买家:愿意付费的利益相关者,例如:私营企业的客户、利益组织的成员、地方或中央政府。

  • 执行模板:企业知识资产,例如对于一个制造公司的生产流程,模板包括产品设计和生产产品的技术生产线的设计。对于提供客户构建软件的软件开发公司,模板包括一个软件方法(项目模板),并根据该方法进行系统开发。对于服务提供商,模板是服务交付的模板。

  • 劳动力:企业的员工,例如:流水线上的工人,医生,研究人员。

  • 合作伙伴:企业的合作企业,如供应商、渠道商、经销商和合作商。例如:一个制造流程中的零件供应商,一个代表医院完成医学测试的实验室。

  • 技术和信息基础设施:运行主流程所需的设备。例如:生产线、计算机、通信线路、建筑物、软件系统等。

  • 组织基础设施:例如:管理部门、部门、团队、规范职责和行为领域的政策。和劳动力不同的是,这里的组织基础设施还包括一些软资产,如业务原则、文化等。

资源-能力模型

每种资源类型都需要一组支持流程,如前所述,这些流程可以映射为能力。能力有三种类型:

  • 获取-企业获取给定类型的新资源的子能力。

  • 维护-保持现有资源处于正确状态的子能力。

  • 退出-逐步淘汰不再可以作为能力的一部分使用的资源的子能力。

建模步骤 

该模型建模包括2步:

第一步:揭示组织结构

1.从识别主能力开始(通常是基于价值流),通过能力资源模型,获取主能力的资源需求;

2通过资源能力模型,检查主能力不同类型资源的使用情况,继续发现支持能力(子能力)。

结果:当前能力的树状结构

第二步:识别可以转换的子能力

使用业务模式来转换子能力,为组织创建一个新的商业模型。

结果:一种新的能力树状结构

整个建模的思路和差距分析中基线优先的原理是一样的:先识别组织当前状态,第二步识别目标状态,第三步识别差距。

本文的目的是揭示ChatGPT的能力结构,所以只使用了第一个步骤,下面是该步骤的详细介绍。

ChatGPT能力架构建模

1:识别主要能力

首先是识别主要能力,一般可以按照价值流进行识别,如一家制造业的的价值流包括:采购-》生产管理-》配送三个环节。那么这三个价值流就是它的主要能力,主要能力要用名词进行描述。

作为一个软件研发初创企业。OpenAPI的主要能力显然是其强大的产品研发能力。

2:识别主能力所需要资源

继续跟进识别主要能力所需的资源。这个地方我们用到了前述”能力-资源”模型。“产品研发”这个能力主要来自其雄厚资金实力的投资人、强大的算法模型、大量优质的数据、强大的算力和其合作伙伴。

其中模型、数据、算力在资源类型中都属于基础设施。资金的来源是其买家(愿意付费的利益相关者)。

3: 确定资源需要的支持的能力

然后确定上述资源所需要的子能力。这个地方我们用到了前述“资源-能力”模型,资源有三种支持能力。在本例中:

  • 模型需要“获取”大模型开发的能力;

  • 投资人资源需要“保持”持续投资的能力;

  • 算力资源需要“获取”计算能力;

  • 数据资源需要获取“数据收集”能力,还需要“保持”数据标注能力。

注意获取和保持的区别在于是否需要持续的能力,实际上对于初创企业,产品通常需要多轮迭代,所以对于大部分能力的需求都是既能“获取”又能“持续”。为了简单化,本示例中仍然将获取和保持区分开。

4、重复第2步

接下来是对能力进行一次迭代分析,也就是重复第二步。

“大模型开发"这个子能力需要的资源是开发团队和算法,其中开发团队的资源类型是“员工”,包括数据科学家、算法工程师、程序员和研究人员;算法的资源类型是“基础设施”,包括神经网络底座和强化学习算法。以此类推我们可以将第三步中的能力所需的资源全部识别出来,资源的细节看参考本期公众号第一篇文章。

至此,我们已经完成了对ChatGPT能力的拆解。

End

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

跟着涛哥学架构

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值