完全背包问题

题目描述

n n n 个重量和价值分别为 w i w_i wi v i v_i vi 的物品。从这些物品中挑选出总重量不超过 W W W 的物品,求所有挑选方案中价值总和的最大值。在这里,每种物品可以挑选任意多件。
数据范围
1 ≤ n ≤ 100 1\le n\le100 1n100
1 ≤ w i , v i ≤ 100 1\le w_i,v_i\le100 1wi,vi100
1 ≤ W ≤ 10000 1\le W\le10000 1W10000


解析

d p [ i ] [ j ] = dp[i][j]= dp[i][j]= 从前 i i i 种物品中挑选总重不超过 j j j 的最大价值
显然,完全背包问题与01背包问题的唯一区别:完全背包问题中的物品个数不是唯一的。我们先来看01背包的递推式:

d p [ 0 ] [ j ] = 0 d p [ i + 1 ] [ j ] = { d p [ i ] [ j ] , j < w i m a x { d p [ i ] [ j ] , d p [ i ] [ j − w i ] + v i } , j ≥ w i \begin{split} dp[0][j]&=0 \\ dp[i + 1][j]&=\begin{cases} dp[i][j]&,j<w_i \\ max\{dp[i][j],dp[i][j-w_i]+v_i\}&,j\ge w_i \end{cases} \end{split} dp[0][j]dp[i+1][j]=0={dp[i][j]max{dp[i][j],dp[i][jwi]+vi},j<wi,jwi

d p [ i ] [ j − w i ] + v i dp[i][j-w_i]+v_i dp[i][jwi]+vi 可以发现,因为01背包中的物品只有一个,所以最多只能拿一个。
对于完全背包来说,物品不止一个,在满足一定的条件下,可以取任意多个,即 d p [ i ] [ j − k ∗ w i ] + k ∗ v i dp[i][j-k\ast w_i]+k\ast v_i dp[i][jkwi]+kvi。以下为完全背包的递推式:

d p [ 0 ] [ j ] = 0 d p [ i + 1 ] [ j ] = m a x ( { d p [ i ] [ j − k ∗ w i ] + k ∗ v i ∣ j ≥ k ∗ w i , k ≥ 0 } ) \begin{split} dp[0][j]&=0 \\ dp[i + 1][j]&= max(\{dp[i][j-k\ast w_i]+k\ast v_i|j\ge k\ast w_i,k\ge0\}) \end{split} dp[0][j]dp[i+1][j]=0=max({dp[i][jkwi]+kvijkwi,k0})

注: { d p [ i ] [ j − k ∗ w i ] + k ∗ v i ∣ j ≥ k ∗ w i , k ≥ 0 } \{dp[i][j-k\ast w_i]+k\ast v_i|j\ge k\ast w_i,k\ge0\} {dp[i][jkwi]+kvijkwi,k0} 是一个集合。对该集合进行 m a x ( ) max() max() 后,目的是找到集合中的最大值。


虽然我们得到了完全背包的递推式,但是它很复杂,接下来对它进行变形。

d p [ i + 1 ] [ j ] = m a x ( { d p [ i ] [ j − k ∗ w i ] + k ∗ v i ∣ j ≥ k ∗ w i , k ≥ 0 } ) = m a x ( d p [ i ] [ j ] , { d p [ i ] [ j − k ∗ w i ] + k ∗ v i ∣ j ≥ k ∗ w i , k ≥ 1 } ) = m a x ( d p [ i ] [ j ] , { d p [ i ] [ ( j − w i ) − k ∗ w i ] + v i + k ∗ v i ∣ j ≥ k ∗ w i , k ≥ 0 } ) = m a x ( d p [ i ] [ j ] , { d p [ i ] [ ( j − w i ) − k ∗ w i ] + k ∗ v i ∣ j ≥ k ∗ w i , k ≥ 0 } + v i ) = m a x ( d p [ i ] [ j ] , d p [ i + 1 ] [ j − w i ] + v i ) \begin{split} dp[i + 1][j]&=max(\{dp[i][j-k\ast w_i]+k\ast v_i|j\ge k\ast w_i,k\ge0\}) \\ &=max(dp[i][j],\{dp[i][j-k\ast w_i]+k\ast v_i|j\ge k\ast w_i,k\ge1\}) \\ &=max(dp[i][j],\{dp[i][(j-w_i)-k\ast w_i]+v_i+k\ast v_i|j\ge k\ast w_i,k\ge0\}) \\ &=max(dp[i][j],\{dp[i][(j-w_i)-k\ast w_i]+k\ast v_i|j\ge k\ast w_i,k\ge0\}+v_i) \\ &=max(dp[i][j],dp[i+1][j-w_i]+v_i) \end{split} dp[i+1][j]=max({dp[i][jkwi]+kvijkwi,k0})=max(dp[i][j],{dp[i][jkwi]+kvijkwi,k1})=max(dp[i][j],{dp[i][(jwi)kwi]+vi+kvijkwi,k0})=max(dp[i][j],{dp[i][(jwi)kwi]+kvijkwi,k0}+vi)=max(dp[i][j],dp[i+1][jwi]+vi)

由此,我们得到了完全背包的最终递推式:

d p [ 0 ] [ j ] = 0 d p [ i + 1 ] [ j ] = { d p [ i ] [ j ] , j < w i m a x { d p [ i ] [ j ] , d p [ i + 1 ] [ j − w i ] + v i } , j ≥ w i \begin{split} dp[0][j]&=0 \\ dp[i + 1][j]&=\begin{cases} dp[i][j]&,j<w_i \\ max\{dp[i][j],dp[i+1][j-w_i]+v_i\}&,j\ge w_i \end{cases} \end{split} dp[0][j]dp[i+1][j]=0={dp[i][j]max{dp[i][j],dp[i+1][jwi]+vi},j<wi,jwi

注: d p [ i + 1 ] [ j − w i ] + v i dp[i+1][j-w_i]+v_i dp[i+1][jwi]+vi 是与01背包唯一不同的地方,即 i i i 变成了 i + 1 i+1 i+1


代码

// 输入
int n, W;                    // n -- 物品个数;W -- 最大重量
int w[WMAX], v[VMAX];        // w[WMAX] -- 物品重量;v[VMAX] -- 物品价值
int dp[MAX][MAX]             // dp数组,与记忆化数组一样,必须足够大

void solve(void)
{
	for (int i = 0; i < n; i++)
	{
		for (int j = 0; j <= W; j++)
		{
			if (j < w[i])
				dp[i + 1][j] = dp[i][j];
			else
				dp[i + 1][j] = max(dp[i][j], dp[i + 1][j - w[i]] + v[i]);   // 与01背包唯一的不同
		}
	}

	printf("%d\n", dp[n][W]);
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值