数据挖掘与分析
文章平均质量分 95
樱桃小叮当
"You had me at Hello."
展开
-
数据挖掘与分析——回归模型
一、实验要求1.掌握Python中的数据的表示;2.掌握Python外部工具包的调用方式;3.掌握线性回归算法、时间序列分析算法的特点和应用场景。二、重点难点1.线性回归算法工具包的使用。原创 2022-09-19 00:25:11 · 2036 阅读 · 0 评论 -
数据挖掘与分析——聚类模型
一、实验要求1.掌握Python中的数据的表示;2.掌握Python外部工具包的调用方式;3.掌握聚类的特点和应用场景。二、重点难点1. 聚类工具包的使用。原创 2022-09-19 00:24:07 · 2430 阅读 · 0 评论 -
数据挖掘与分析——关联规则模型
一、实验要求1.掌握数据的矩阵表示;数据预处理基本方法;2.掌握Python基本语法;掌握Python的函数编程实现关联规则Apriori算法;3.掌握利用Python可视化工具进行数据的可视化表示;4.掌握关联规则的特点和应用场景。二、重点难点1. Apriori算法和编程实现、Python可视化工具。原创 2022-09-19 00:27:42 · 2148 阅读 · 0 评论