Codeforces Round #714 (Div. 2) C题

题目链接

Codeforces Round #714 (Div. 2) Problem C

分析

首先,可以想到一种能够保证正确性的方法:按照题意模拟。这种方法下,每个案例复杂度为 O ( m ) O(m) O(m) 1 0 5 10^5 105数量级;但由于还有最多 2 × 1 0 5 2\times 10^5 2×105个测试案例,总复杂度为 O ( t m ) O(tm) O(tm) 1 0 10 10^{10} 1010数量级,而且其中每步操作也较为复杂,需要维护每个数字( 0 ∼ 9 0\sim 9 09)的计数,所以应该会超时 ,实验证明确实如此

发现任何一个数字在常数步操作(1~10步)后必定会转换为字符串"10",于是就想到第二种方案:把"10"作为输入丢进模拟算法,记下它在第 i i i步时字符串长度 l i l_i li,之后对于真实输入的每个字符 c h ch ch,就只要考虑将 m m m减去它本身变成"10"的步数 s s s,然后去查 l m − s l_{m-s} lms,就可以得出该字符最终变成的字符串长度;又因为各个字符之间变换可以看作是独立的,所以最终把所有长度加起来即可。(当然实际实现时此处还需考虑一些如 m − s < 0 m-s<0 ms<0之类的边界情况。)

以下代码就是基于第二段的思路所写的(细节其实还有些差异,没有做到最优),已经能够通过本题:

#include <iostream>
#include <vector>
#include <array>

using namespace std;

using bucs = array<long long, 10>;

bucs st[200005];

constexpr int MOD = 1e9 + 7;

void solve() {
    const int m = 200000;
    const string n = "10";
    // cin >> n >> m;
    bucs b { 0 };
    for (auto ch : n) {
        b[ch - '0']++;
    }
    for (int i = 0; i < m; i++) {
        auto mem_9 = b[9];
        for (int j = 9; j >= 1; j--) {
            b[j] = b[j - 1];
        }
        b[0] = mem_9;
        b[1] += mem_9;
        for (auto& x : b) {
            x %= MOD;
        }
        st[i] = b;
    }
}

void real_solve() {
    string n;
    int m;
    cin >> n >> m;
    bucs b { 0 };
    long long ans = 0;
    for (auto ch : n) {
        b[ch - '0']++;
    }

    for (int i = 0; i < 10; i++) {
        auto num = b[i];
        long long std_ans = 0;
        if (m - 1 - (10 - i) == -1) {
            std_ans = 2;
        } else if (m - 1 - (10 - i) < -1) {
            std_ans = 1;
        } else {
            auto &rec = st[m - 1 - (10 - i)];
            for (int j = 0; j < 10; j++) {
                std_ans += rec[j];
                std_ans %= MOD;
            }
        }
        ans += std_ans * num;
        ans %= MOD;
    }
    cout << ans << '\n';
}

int main() {
    ios_base::sync_with_stdio(false);
    cin.tie(nullptr);
    solve();
    int t;
    cin >> t;
    for (int i = 0; i < t; i++) {
        real_solve();
    }
    return 0;
}

但是,官方题解中给出了以下更加简洁的递推式:设 d p i dp_i dpi为字符串"10"进行 i i i次操作后形成的字符串长度,则有:
{ d p i = 2 , 0 ≤ i ≤ 8 , d p i = 3 , i = 9 , d p i = d p i − 10 + d p i − 9 , i > 9. \begin{cases} dp_i=2,&0\leq i\leq 8,\\ dp_i=3,&i=9,\\ dp_i=dp_{i-10}+dp_{i-9},&i>9. \end{cases} dpi=2,dpi=3,dpi=dpi10+dpi9,0i8,i=9,i>9.
有了这组递推式,就可以用简单的一维动态规划得出结果。其中第一条和第二条可以通过实验直接得出,但第三条的含义却不那么显而易见。以下给出这一条递推式的两种理解/推理方式。

方法一:观察

由于题目背景是数的十进制表示,再加上自己写的一些案例,可以想到10次操作可能有一些特殊含义。可以列举一下单个数字(0-9)组成的字符串进行10次操作后的结果:
0 → 1   0 1 → 2   1 2 → 3   2 ⋮ 8 → 9   8 9 → 10   9 0\rightarrow1\ 0\\ 1\rightarrow2\ 1\\ 2\rightarrow3\ 2\\ \vdots\\ 8\rightarrow9\ 8\\ 9\rightarrow10\ 9 01 012 123 289 8910 9
以上结果字符串被我认为用空格隔开了。这样看,任何单个数字进行10次操作,其结果都等于它的下一个数+它本身。而对于多于一个字符的输入,各个字符的“发展”也是独立的。这样, d p i − 10 + d p i − 9 dp_{i-10}+dp_{i-9} dpi10+dpi9的意义就显现了出来。

方法二:代数推导

可以把一开始模拟的过程也写成递推表达式的形式。

b i , j b_{i,j} bi,j是第 i i i次操作后, j j j这个数字出现的次数,其中 i ∈ N , j ∈ { 0 , 1 , … , 9 } i\in \mathbb{N},j\in\{0,1,\dots,9\} iN,j{0,1,,9}。则可以写出:
{ b i , j = b i − 1 , j − 1 , 2 ≤ j ≤ 9 , b i , 0 = b i − 1 , 9 , ( j = 0 ) , b i , 1 = b i − 1 , 0 + b i − 1 , 9 , ( j = 1 ) . \begin{cases} b_{i,j}=b_{i-1,j-1},&2\leq j\leq 9,\\ b_{i,0}=b_{i-1,9},&(j=0),\\ b_{i,1}=b_{i-1,0}+b_{i-1,9},&(j=1). \end{cases} bi,j=bi1,j1,bi,0=bi1,9,bi,1=bi1,0+bi1,9,2j9,(j=0),(j=1).
又有
d p i = ∑ j = 0 9 b i , j = ∑ j = 0 9 ( b i − 1 , j ) + b i − 1 , 9 = d p i − 1 + b i − 1 , 9 \begin{aligned} dp_i&=\sum_{j=0}^9b_{i,j}\\ &=\sum_{j=0}^9(b_{i-1,j}) +b_{i-1,9}\\ &=dp_{i-1}+b_{i-1,9} \end{aligned} dpi=j=09bi,j=j=09(bi1,j)+bi1,9=dpi1+bi1,9
我们希望得出 d p i dp_i dpi d p i − 1 , d p i − 2 , … dp_{i-1},dp_{i-2},\dots dpi1,dpi2,之间的关系式。设 i ≥ 10 i\geq10 i10,则可以进一步代换,得
d p i = d p i − 1 + b i − 1 , 9 = d p i − 2 + b i − 2 , 9 + b i − 2 , 8 = ⋯ = d p i − 9 + b i − 9 , 9 + b i − 9 , 8 + ⋯ + b i − 9 , 1 = d p i − 10 + b i − 10 , 9 + b i − 10 , 8 + ⋯ + b i − 10 , 0 + b i − 10 , 9 = d p i − 10 + d p i − 10 + b i − 10 , 9 = d p i − 10 + d p i − 9 . \begin{aligned} dp_i&=dp_{i-1}+b_{i-1,9}\\ &=dp_{i-2}+b_{i-2,9}+b_{i-2,8}\\ &=\cdots\\ &=dp_{i-9}+b_{i-9,9}+b_{i-9,8}+\cdots+b_{i-9,1}\\ &=dp_{i-10}+b_{i-10,9}+b_{i-10,8}+\cdots+b_{i-10,0}+b_{i-10,9}\\ &=dp_{i-10}+dp_{i-10}+b_{i-10,9}\\ &=dp_{i-10}+dp_{i-9}. \end{aligned} dpi=dpi1+bi1,9=dpi2+bi2,9+bi2,8==dpi9+bi9,9+bi9,8++bi9,1=dpi10+bi10,9+bi10,8++bi10,0+bi10,9=dpi10+dpi10+bi10,9=dpi10+dpi9.
由此就推导出了这个递推式。

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值