自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(11)
  • 资源 (4)
  • 收藏
  • 关注

原创 c++调用cplex求解p-中位选址问题(p-median Problem)

p-中位问题的数学模型见。数据data.dat如下。

2025-05-12 10:57:57 210

原创 C++在clion平台下调用gurobi求解问题(debug & release)

set(gurobi_include H:/Gurobi11.0.2/win64/include ) #头文件。set(gurobi_include H:/Gurobi11.0.2/win64/include ) #头文件。set(gurobi_lib H:/Gurobi11.0.2/win64/lib ) #库文件。set(gurobi_lib H:/Gurobi11.0.2/win64/lib ) #库文件。从上面两个CMakelists.txt可以看出,只是最后一行的设置不一样而已。

2025-05-06 22:27:16 157

原创 C++ 在Visual Studio平台上配置 CPLEX

注:输入这里直接填写 concert.lib cplex2211.lib ilocplex.lib 即可。不需要把那么长的绝对路径填写进去。C++ 在Visual Studio平台上配置 CPLEX 的方法见。然后点击确认,大功告成。

2025-05-05 21:09:58 835

原创 C++在clion、VS平台下debug 、release模式的运算速度比较

cout << " \n C++计算f("<< num << ")运行时间:" << tt / 1000.0 << "秒\n";eclipse平台下debug 模式时。clion平台下debug 模式时。clion平台下release模式。VS平台下debug 模式时。VS平台下release模式。

2025-05-05 18:51:15 198

原创 c++(clion)调用matplot++ & gnuplot 来画图

CMakelists.txt设置如下。

2025-05-04 22:59:20 223

原创 C++书籍推荐

1.艾弗·霍尔顿,彼得·范·维尔特 著,周百顺 译. C++20实践入门(第6版).清华大学出版社。2.[英] J. Guy Davidson 等 著,王江平 译. C++之美:代码简洁、安全又跑得快的30个要诀.电子工业出版社。2.[罗马尼亚] 马里乌斯·班西拉(Marius Bancila) 著. 现代C++编程实战 原书第2版.机械工业出版社。译. C++20高级编程(第5版).清华大学出版社。C++性能优化指南 C++性能优化指南.人民邮电出版社。译. 21天学通C++(第9版).

2025-05-03 10:42:12 122

原创 C++计算库eigen和armadillo 及 C++画图库gnuplot

set(Armadillo_DIRmm H:/software/armadillo14_4_2/include) #Armadillo头文件,注意以include结尾。下载eigen,解压后将里面的Eigen文件夹复制到H:\Visual_Studio_2022\VC\Tools\MSVC\14.43.34808\include。set(Armadillo_DIRc H:/software/armadillo14_4_2/examples/lib_win64) #设置链接库路径 库文件。

2025-04-30 19:48:54 363

原创 clion(c++)调用matlab引擎来计算

set(LINK_DIRmm I:/matlab2024b/extern/lib/win64/microsoft) #设置链接库路径 库文件。set(INC_DIRmm I:/matlab2024b/extern/include) #matlab头文件。然后在cpp文件里输入c++代码,用的是matlab文档里的代码(调用带单一返回参量的函数)include_directories(${INC_DIRmm}) #引入头文件。link_directories(${LINK_DIRmm}) #引入库文件。

2025-04-13 12:06:45 430

原创 clion/C++中文乱码解决方法

注意到下面的任务栏中显示的是UTF-8,在Pycharm中这个是没有问题。但在clion运行c++代码时就会出现问题。这时把UTF-8转换为GBK即可。Clion运行 c++代码会出现中文乱码,如下。点击中间那个convert转换即可。选择GBK,然后转换。最后再运行c++代码。

2025-04-08 20:38:36 269 1

原创 clion(C++配置msvc)调用cplex求解问题

测试代码用clpex里的例子facility.cpp,请自己到clplex安装目录下寻找,注意修改一下地址,即改成相对路径 const char* filename = "facility.dat";花了很多时间,一个一个地试,终于搞定了clion(配置msvc)调用cplex求解问题。本文主要讲clion(C++配置msvc)调用cplex求解问题。关于clion调用gurobi 请查看链接里的文章。CMakelist.txt文件里写。

2024-10-17 01:04:06 442

原创 clion与msvc2022:ninja: error: build.ninja:35: loading ‘CMakeFiles/rules.ninja‘: 系统找不到指定的文件 ,已解决

clion:ninja: error: build.ninja:35: loading 'CMakeFiles/rules.ninja': 系统找不到指定的文件 ,怎么解决?

2024-10-05 18:34:57 779

如果你用python3.9版本安装pygraphviz,需要安装如下的轮子 pygraphviz-1.11-cp39-cp39

如果你用python3.9版本安装pygraphviz,需要安装如下的轮子 pygraphviz-1.11-cp39-cp39-win_amd64.whl 用python3.8以下版本安装pygraphviz,看文章 https://blog.csdn.net/frostime/article/details/104620220

2024-11-05

如果你用python3.12版本安装pygraphviz,需要安装如下的轮子 pygraphviz-1.12-cp312-cp3

如果你用python3.10版本安装pygraphviz,需要安装如下的轮子,windows pygraphviz-1.12-cp310-cp310-win_amd64.whl python3.8版本安装pygraphviz的安装过程,看文章https://blog.csdn.net/frostime/article/details/104620220

2024-11-05

如果你用python3.11版本安装pygraphviz,需要安装如下的轮子 pygraphviz-1.12-cp311

如果你用python3.11版本安装pygraphviz,需要安装如下的轮子 pygraphviz-1.12-cp311-cp311-win_amd64.whl 用python3.8以下版本安装pygraphviz,看文章 https://blog.csdn.net/frostime/article/details/104620220

2024-11-05

pygraphviz-1.12-cp312-cp312-win-amd64.whl,这个windows操作系统的

如果你用python3.12版本安装pygraphviz,需要安装如下的轮子 pygraphviz-1.12-cp312-cp312-win_amd64.whl python3.8版本安装pygraphviz,需要安装,看文章https://blog.csdn.net/frostime/article/details/104620220

2024-11-05

Combinatorial Optimization Theory and Algorithms Third Edition

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Enumeration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Running Time of Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Linear Optimization Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4 Sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2. Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 Trees, Circuits, and Cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3 Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.4 Eulerian and Bipartite Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.5 Planarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.6 Planar Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3. Linear Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.1 Polyhedra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.2 The Simplex Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.3 Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.4 Convex Hulls and Polytopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4. Linear Programming Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.1 Size of Vertices and Faces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.2 Continued Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.3 Gaussian Elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.4 The Ellipsoid Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.5 Khachiyan’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.6 Separation and Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 XII Table of Contents 5. Integer Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.1 The Integer Hull of a Polyhedron . . . . . . . . . . . . . . . . . . . . . . . . . . 92 5.2 Unimodular Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.3 Total Dual Integrality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5.4 Totally Unimodular Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 5.5 Cutting Planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 5.6 Lagrangean Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 6. Spanning Trees and Arborescences . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 6.1 Minimum Spanning Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 6.2 Minimum Weight Arborescences . . . . . . . . . . . . . . . . . . . . . . . . . . 125 6.3 Polyhedral Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 6.4 Packing Spanning Trees and Arborescences . . . . . . . . . . . . . . . . . 132 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 7. Shortest Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 7.1 Shortest Paths From One Source . . . . . . . . . . . . . . . . . . . . . . . . . . 144 7.2 Shortest Paths Between All Pairs of Vertices . . . . . . . . . . . . . . . . . 148 7.3 Minimum Mean Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 8. Network Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 8.1 Max-Flow-Min-Cut Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 8.2 Menger’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 8.3 The Edmonds-Karp Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 8.4 Blocking Flows and Fujishige’s Algorithm . . . . . . . . . . . . . . . . . . 166 8.5 The Goldberg-Tarjan Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 8.6 Gomory-Hu Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 8.7 The Minimum Cut in an Undirected Graph . . . . . . . . . . . . . . . . . . 179 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 9. Minimum Cost Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 9.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 9.2 An Optimality Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 9.3 Minimum Mean Cycle-Cancelling Algorithm . . . . . . . . . . . . . . . . 195 9.4 Successive Shortest Path Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 199 9.5 Orlin’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 9.6 Flows Over Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 Table of Contents XIII 10. Maximum Matchings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 10.1 Bipartite Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 10.2 The Tutte Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 10.3 Tutte’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 10.4 Ear-Decompositions of Factor-Critical Graphs . . . . . . . . . . . . . . . 223 10.5 Edmonds’ Matching Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 11. Weighted Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 11.1 The Assignment Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 11.2 Outline of the Weighted Matching Algorithm . . . . . . . . . . . . . . . . 247 11.3 Implementation of the Weighted Matching Algorithm . . . . . . . . . 250 11.4 Postoptimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263 11.5 The Matching Polytope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 12. b-Matchings and T -Joins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 12.1 b-Matchings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 12.2 Minimum Weight T -Joins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 12.3 T -Joins and T -Cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 12.4 The Padberg-Rao Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288 13. Matroids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291 13.1 Independence Systems and Matroids . . . . . . . . . . . . . . . . . . . . . . . 291 13.2 Other Matroid Axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295 13.3 Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299 13.4 The Greedy Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303 13.5 Matroid Intersection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308 13.6 Matroid Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313 13.7 Weighted Matroid Intersection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320 14. Generalizations of Matroids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323 14.1 Greedoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323 14.2 Polymatroids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327 14.3 Minimizing Submodular Functions . . . . . . . . . . . . . . . . . . . . . . . . . 331 14.4 Schrijver’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333 14.5 Symmetric Submodular Functions . . . . . . . . . . . . . . . . . . . . . . . . . 337 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341 XIV Table of Contents 15. NP-Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343 15.1 Turing Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343 15.2 Church’s Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345 15.3 P and NP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350 15.4 Cook’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354 15.5 Some Basic NP-Complete Problems . . . . . . . . . . . . . . . . . . . . . . . . 358 15.6 The Class coNP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365 15.7 NP-Hard Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374 16. Approximation Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377 16.1 Set Covering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378 16.2 Colouring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383 16.3 Approximation Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390 16.4 Maximum Satisfiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392 16.5 The PCP Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397 16.6 L-Reductions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410 17. The Knapsack Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415 17.1 Fractional Knapsack and Weighted Median Problem . . . . . . . . . . 415 17.2 A Pseudopolynomial Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 418 17.3 A Fully Polynomial Approximation Scheme . . . . . . . . . . . . . . . . . 420 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423 18. Bin-Packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425 18.1 Greedy Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425 18.2 An Asymptotic Approximation Scheme . . . . . . . . . . . . . . . . . . . . . 431 18.3 The Karmarkar-Karp Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 435 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439 19. Multicommodity Flows and Edge-Disjoint Paths . . . . . . . . . . . . . . . . 443 19.1 Multicommodity Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444 19.2 Algorithms for Multicommodity Flows . . . . . . . . . . . . . . . . . . . . . 447 19.3 Directed Edge-Disjoint Paths Problem . . . . . . . . . . . . . . . . . . . . . . 451 19.4 Undirected Edge-Disjoint Paths Problem . . . . . . . . . . . . . . . . . . . . 455 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463 Table of Contents XV 20. Network Design Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467 20.1 Steiner Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468 20.2 The Robins-Zelikovsky Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 473 20.3 Survivable Network Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478 20.4 A Primal-Dual Approximation Algorithm . . . . . . . . . . . . . . . . . . . 481 20.5 Jain’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498 21. The Traveling Salesman Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501 21.1 Approximation Algorithms for the TSP . . . . . . . . . . . . . . . . . . . . . 501 21.2 Euclidean TSPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506 21.3 Local Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513 21.4 The Traveling Salesman Polytope . . . . . . . . . . . . . . . . . . . . . . . . . . 519 21.5 Lower Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525 21.6 Branch-and-Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532 22. Facility Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537 22.1 The Uncapacitated Facility Location Problem . . . . . . . . . . . . . . . . 537 22.2 Rounding Linear Programming Solutions . . . . . . . . . . . . . . . . . . . 539 22.3 Primal-Dual Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541 22.4 Scaling and Greedy Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . 547 22.5 Bounding the Number of Facilities . . . . . . . . . . . . . . . . . . . . . . . . . 550 22.6 Local Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553 22.7 Capacitated Facility Location Problems . . . . . . . . . . . . . . . . . . . . . . 559 22.8 Universal Facility Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 568 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 570 Notation Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573 Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577 Subject Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 585

2011-03-06

Algorithms for Approximation

Proceedings of the 5th International Conference, Chester, July 2005 Part I. Imaging and Data Mining; Part II. Numerical Simulation; Part III. Statistical Approximation Methods; Part IV. Data Fitting and Modelling; Part V. Differential and Integral Equations; Part VI. Special Functions and Approximation on Manifolds.

2011-03-07

保罗·戴特尔,哈维·戴特尔 Java大学教程(第十一版) 答案 Java How to Program, 11e

保罗·戴特尔,哈维·戴特尔 Java大学教程(第十一版) 答案 JAVA大学教程 答案 Java How to Program, 11e (Early Objects)答案

2023-03-11

Foundations of Location Analysis

Foundations of Location Analysis设施选址方面的著作

2014-08-18

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除