面试题43:n个骰子的点数

       题目:把n个骰子扔在地上,所有骰子朝上一面的点数之和为s。输入n,打印出s所有可能的值出现的概率。

      该题是典型的动态规划问题。n个骰子它的和显然和前面n-1个骰子的状态有关。可以一步步划分来求,一般考虑设个数祖,一个记录当前是第多少个骰子,一个记录总和多少,还要记录总和的概率,因此此处考虑设个二维数组,p[m][n],m表示当前骰子数值,n代表当前点数。p[m][n]代表出现的次数或者概率。但是此次看书上用的只是一个行为2的数组,大大减小了内存消耗。很经典,应该学习。代码如下:

      

#include "stdafx.h"
#include <algorithm>
const int g_max = 6;
void Probility(int num)
{
	if(num < 0)
		return;
	int len = g_max * num;
	int *p[2];
	p[0] = new int[len + 1];
	p[1] = new int[len + 1];
	for (int i = 0; i < len + 1; i++)
	{
		p[0][i] = 0;
		p[1][i] = 0;
	}
	int flag = 0;
	for (int i = 1; i <= g_max; i++)
	{
		p[flag][i] = 1;
	}
	for (int k = 2; k <= num; k++)
	{
		for (int i = 0; i < k; i++)
		{
			p[1 - flag][i] = 0;
		}
		for (int i = k; i <= g_max *k; i++)
		{
			p[1 - flag][i] = 0;
			for (int j = 1; (j < i) && (j <= g_max); j++)
			{
				p[1 - flag][i] += p[flag][i - j];
			}
		}
		flag = 1 - flag;
	}
	double total = pow((double)g_max, num);
	for (int i = num; i <= g_max * num; i++)
	{
		double ratio = (double)p[flag][i] / total;
		printf("%d: %e\n", i, ratio);
	}
	delete[] p[0];
	delete[] p[1];

}

int _tmain(int argc, _TCHAR* argv[])
{
	Probility(4);
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值