
ScienceAI
文章平均质量分 91
HyperAI超神经
链接人工智能新场景
展开
-
基于800万真实数据,康奈尔大学团队利用图神经网络精准预测肺癌患者生存期,发现3类致命亚型
美国康奈尔大学与再生元制药公司提出图编码混合生存模型(GEMS),通过图神经网络编码患者电子健康记录复杂关系并与生存分析模型结合,识别具有一致特征和生存结局的亚表型。原创 2025-05-19 15:44:32 · 381 阅读 · 0 评论 -
首次实现纳米晶体端到端解析,哥大团队提出PXRDnet,成功解析200种复杂模拟纳米晶体
哥伦比亚大学、斯坦福大学的研究人员提出了一种基于扩散模型的生成式人工智能结构解析方法 PXRDnet。即便仅以化学式和信息稀缺的有限尺寸展宽粉末衍射图为条件,该模型也能成功解析 200 种不同对称性和复杂性的模拟纳米晶体,涵盖来自所有七个晶体系统的结构,最小粒径可至 10 Å。原创 2025-05-15 14:24:54 · 869 阅读 · 0 评论 -
David Baker 团队最新研究,利用蛋白质序列生成模型实现重叠基因设计,成功率极高
美国华盛顿大学 David Baker 团队近期利用先进生成模型,通过合成 OLG 设计研究,从工程化角度验证其可行性。研究团队针对 2 个蛋白家族设计重叠序列,编码高度有序的从头设计蛋白结构,计算机模拟与实验验证均显示出极高成功率。原创 2025-05-13 14:28:09 · 838 阅读 · 0 评论 -
登Nature子刊,俄罗斯研究团队基于机器学习实现万亿级质谱数据搜索,发现未知化学反应
俄罗斯科学院的研究人员,开发出一种基于机器学习的搜索引擎 MEDUSA Search,能够对太字节规模的高分辨率质谱数据进行分析,助力发现未知的化学反应!原创 2025-05-12 13:45:50 · 998 阅读 · 0 评论 -
性能远超SAM系模型,苏黎世大学等开发通用3D血管分割基础模型
苏黎世大学、苏黎世联邦理工学院和慕尼黑工业大学的团队提出了一个专为 3D 血管分割而设计的基础模型 vesselFM。该模型能够在零样本、单样本和少样本场景中实现优于现有先进模型的分割能力和泛化能力。原创 2025-05-08 16:36:33 · 766 阅读 · 0 评论 -
中日团队联合攻关,利用大模型解析氢化物固态电解质传导机制,建立可靠活化能预测模型
在活化能预测研究中,研究团队引入 8 个理论描述符:单元格体积 (V)、电负性 (X)、原子序数 (Z)、结合能 (bₘ)、阴离子间距 (d)、中性分子数量 (n)、原子半径 (ratom) 和离子半径 (rion),对闭式 (Closo-SSEs) 和巢式 (Nido-SSEs) 体系进行单一线性回归 (Single linear regressions) 及多重线性回归 (multiple linear regression) 分析。当前研究普遍存在的方法论碎片化问题,也限制了对材料体系的系统性理解。原创 2025-05-07 15:59:12 · 603 阅读 · 0 评论 -
入选CVPR 2025,哈工大团队提出分层蒸馏多示例学习框架HDMIL,快速处理千兆像素病理全切片图像
而不可否认的是,正是这些执着于科学前沿的「探索者」,才使得我们有机会享受人工智能和医学交叉融合后的应用。具体来看,首先从高分辨率 WSI (Xᵢ,ₕᵣ) 中提取的所有 patch 都被输入到预训的练特征提取器中,生成一组示例级特征 Iᵢ,ₕᵣ,然后继续输入到投射模块中进行降维,得到新的特征集 Fᵢ,ₕᵣ,之后继续输入到注意力模块中以计算未归一化的注意力分数。近年来,数字病理学的蓬勃发展引领了新一轮医学事业和生物学的进步,尤其是在对抗人类最大的敌人之一的癌症时,发挥着重要的作用。原创 2025-05-06 20:00:45 · 1059 阅读 · 0 评论 -
在线教程丨Qwen3狂揽近20k star,网友实测:比Llama更快解决更难问题
值得一提的是,Qwen3-30B-A3B 的激活参数数量仅为 QwQ-32B 的 10%,但表现更胜一筹,甚至像 Qwen3-4B 这样的小模型也能匹敌 Qwen2.5-72B-Instruct 的性能。仅仅一天的时间便在 GitHub 斩获近 20k stars,而除了极高的讨论热度外,Qwen3 更是凭借性能的提升与部署成本的下探,一举问鼎开源大模型王座。X 用户 Jafar Najafov 对比了 Qwen3 与相同模型参数量的 Llama Qwen3 能更快地解决更难的问题。根据官方发布的数据,原创 2025-04-30 18:39:12 · 981 阅读 · 0 评论 -
入选ICLR 2025 Oral,清华AIR周浩团队提出蛋白质预训练新范式,解密蛋白质家族进化
ProfileBFN 作为蛋白质基座模型,能够在资源有限的情况下整合更多同源信息,充分利用特定先验信息,对多指标有良好的迁移作用,这无疑让它成为合成候选蛋白,定向进化的不二之选。随着技术的发展,深度生成模型输入的 MSA 深度不断增加,但是效果却遇到了瓶颈,这让添加 MSA 信息的性价比遭到了质疑。在数量上,对于某些「孤儿」蛋白质,同源序列可能不超过 10 条,而有些蛋白质能够搜索到超过 10,000 条同源序列,这给大模型造成了很大困惑,产生了资源的浪费和效率上的影响。原创 2025-04-29 16:54:27 · 678 阅读 · 0 评论 -
开发迄今最大的遥感指令数据集,IBM研究院等提出专为地球观测数据设计的VLM,入选CVPR 2025
该数据集的预训练策略聚焦于跨模态、跨分辨率、跨时相的泛化能力构建,通过从 SkyScript、SatlasPretrain 等专业平台筛选高质量问答指令对,整合了 Sentinel-2 光学影像、Sentinel-1 合成孔径雷达数据、NAIP 航空影像、Landsat 卫星影像等多源异构遥感数据,并同步配置地理标签信息。未来,随着多模态大模型、在轨智能处理、量子计算等技术融合,地球观测有望成为支撑碳中和、防灾减灾、资源管理等全球议题的数字基石,在人类与自然的共生关系中书写可持续发展的新篇章。原创 2025-04-28 16:16:43 · 987 阅读 · 0 评论 -
效率提升73倍!日本研究团队基于机器学习成功制备10种光驱动有机晶体
这种方法的效率是传统网格搜索法的 73 倍,极大地提升了光电机械分子晶体的适用性,并有助于优化功能晶体的其他特性。如上所述,当光驱动晶体发生形变时,物体能够施加力并做功,在这种情况下,当晶体的自由形变被完全阻止时,会产生一个最大力,这被定义为阻挡力 (blocking force),有效控制光驱动晶体的阻挡力对于其实际应用至关重要。由于在许多情况下,文献提供了材料多个方向的测量值(例如,沿不同的晶体学轴),因此,研究人员提取了每个相关的数据点,还纳入了弯曲测试数据和其他测量数据,以确保数据集的全面性。原创 2025-04-27 17:51:11 · 1257 阅读 · 0 评论 -
最大化挖掘临床MRI数据价值,UCL团队提出MindGlide模型,实现多发性硬化症病变量化
随后,研究人员进行了针对病变治疗效果的纵向验证,涉及多项实验,证明了 MindGlide 在治疗效果检测方面的有效性,如在 SPMS 和 PPMS 试验中,治疗组的病变体积累积量低于安慰剂组;针对模型训练的图像预处理,研究人员使用了一个最小的预处理管道,首先将图像分辨率标准化为 1 mm 各向同性体素,然后根据 nnU-Net 设计。近年来,人工智能的快速发展,使其在神经系统疾病方面的应用不断加快,并且由于其独特的工作机制和高效的方法,为医学界通过人工智能进行 MS 研究提供了新的思路。原创 2025-04-25 15:44:58 · 1061 阅读 · 0 评论 -
30分钟内输出结果,新加坡国立大学/MIT等基于SVM构建微生物污染检测模型
新加坡国立大学/MIT等提出了一种结合紫外吸收光谱与机器学习的检测方法,能在 30 分钟内完成细胞培养上清液的微生物污染检测。原创 2025-04-23 13:38:56 · 965 阅读 · 0 评论 -
入选AAAI 2025,浙江大学提出多对一回归模型M2OST,利用数字病理图像精准预测基因表达
中国浙江大学的林兰芬教授研究团队联合浙江杭州之江实验室以及日本立命馆大学共同提出了 M2OST,这是一种多对一回归 Transformer 模型,旨在利用不同层次的病理图像共同预测基因表达。原创 2025-04-21 13:36:14 · 1094 阅读 · 0 评论 -
覆盖40+主流模型及数据集,上海交大团队发布一站式蛋白质工程设计平台VenusFactory,一键部署教程已上线
上海交通大学洪亮教授课题组开发了一个专为蛋白质工程量身打造的一站式开放平台 VenusFactory,HyperAI超神经官网的教程版块已上线一键部署教程,欢迎体验!原创 2025-04-17 16:28:37 · 1063 阅读 · 0 评论 -
入选ICLR 2025,MIT/UC伯克利/哈佛/斯坦福等提出DRAKES算法,突破生物序列设计瓶颈
近日, MIT / UC 伯克利/哈佛/斯坦福等顶尖大学团队共同提出了创新性算法 DRAKES ,通过引入强化学习框架,首次在离散扩散模型中实现了对完整生成轨迹的可微奖励反向传播,在保持序列自然性的同时,显著提升下游任务性能。原创 2025-04-16 14:56:04 · 899 阅读 · 0 评论 -
酶动力学参数预测,瓶颈识别……中科院深圳先进技术研究院罗小舟分享AI在酶领域的创新应用
作为生命的基础分子,核酸、小分子脂类、糖类、代谢产物和离子、水等物质均产自蛋白质,基于这一特性,在 2019 年回国后,我将研究重点聚焦到蛋白质领域,并且提出了 3 个科学问题:首先是能否直接从蛋白质的序列预测出其活性和功能?蛋白质,作为生命的基石,在生命活动中发挥着关键作用,其结构和功能的研究,对创新药物研发、合成生物学、酶制剂生产等领域,有着极其重要的意义。但传统蛋白质设计面临诸多难题,蛋白质结构复杂,序列空间庞大,依赖专家经验和高通量筛选的设计方式,不仅耗时费力,成功率也难以保证。原创 2025-04-14 18:15:20 · 934 阅读 · 0 评论 -
在线教程丨字节开源 InfiniteYou 图像生成框架,实现高保真面部特征迁移
InfiniteYou(简称 InfU)是由字节跳动智能创作团队 (ByteDance Intelligent Creation) 近期推出的一款基于 Diffusion Transformers 的身份保持 (identity-preserved) 图像生成框架。它通过先进的技术,能够在生成图像的同时保持人物身份的一致性,即在生成不同场景的图片时能够精准保留面部特征。作为该领域最早利用扩散 Transformer (DiTs) 的框架之一,InfU 系统性地解决了现有方法的 3 大核心问题:身份相似度不足原创 2025-04-11 14:57:02 · 907 阅读 · 0 评论 -
研发速度快100倍,成本降低90%!AI材料公司Phaseshift Technologies打造能源/航天/矿业/汽车专用合金
首先,利用专有合金数据集进行训练(现有数据和模拟数据),MatterMind™ 能够快速分析庞大的合金成分空间,预测最佳合金配方,并揭示元素、加工条件、微观结构、材料性能之间的复杂非线性关系,这些关系往往超越人类直觉,甚至无法用数学公式直接表达。进一步地,先进的计算模型还可以对这些食谱进行模拟和评估。例如,智能手机在强度和重量方面的设计基本已达最佳水平,也就是说,因为玻璃、铝合金、电池等相关材料的发展现状,手机的重量已经很难出现跨越式的降低,而像塑料这类的轻质材料在强度方面亦受限制——耐划痕、耐用性偏弱。原创 2025-04-11 14:23:05 · 973 阅读 · 0 评论 -
入选CVPR 2025,上海AI Lab等提出首个全模态医疗图像重识别框架,在11个数据集上的评测达SOTA
这是一种全新的医疗图像重识别方法,通过引入连续模态参数适配器,突破传统单一模态限制,使得一个统一的模型能够在运行时自动调整为适合当前输入(如 X-ray、CT、眼底、病理、MRI 等)的模态专用模型。理想的医疗图像重识别模型应能自动检测图像中与身份相关的区域,并通过适当的后处理将这些区域变为不可识别状态,从而在保障数据的医学实用性的前提下,有效降低隐私泄露风险。研究团队通过对跨图像差异进行建模,将预训练的医疗基础模型中的丰富医疗先验知识迁移到重识别任务中,有效提升了模型对细微身份线索的捕捉能力。原创 2025-04-10 18:35:58 · 1025 阅读 · 0 评论 -
登Nature,剑桥大学等发布首个端到端的数据驱动天气预报系统,预测速度提升数十倍
尽管 Aardvark 在更高大气层和较短提前期的误差较大,这可能是由于靠近地表的观测数据更为集中,但对于较长的提前期,Aardvark 的预报倾向于变得光谱模糊,这是数据驱动天气预报系统中的常见现象。然而,物理机制的解释性、数据的实时性以及极端事件的建模仍是亟待突破的难题。在局部站点预报方面,该系统在长达 10 天的提前期内展现出较高的预报技巧,其表现与经过后处理优化的全球 NWP 基准、以及结合人类预报员输入的先进端到端预报系统相当,进一步的端到端调优显著提升了局部预报的准确性。原创 2025-04-09 15:19:03 · 722 阅读 · 0 评论 -
SEER只是开始?美国NIH发文禁止中国用户访问生物医学核心数据,国产数据库已就位
自 1973 年起运行至今,已经成为全球最权威、最常用的癌症流行病学数据库之一,已覆盖美国约 48% 的人口,数据涵盖年龄、性别、诊断时间等基本信息,癌症类型、病理分型分期等诊断信息,手术、放疗/化疗等治疗信息,生存时间、生存状态等随访信息。一位海德堡大学在读博士收到的官方回复邮件更是被多家媒体转载,其中明确提出,「自 2025 年 4 月 4 日起,国家卫生研究院将禁止特定国家的研究人员和机构,访问任何涉及国家卫生研究院 CADRS 和相关数据的正在进行中的项目,并将会终止这些项目。原创 2025-04-08 22:31:17 · 583 阅读 · 0 评论 -
西湖大学团队开源SaProt等多款蛋白质语言模型,覆盖结构功能预测/跨模态信息搜索/氨基酸序列设计等
大家可以互相 share Adapter,并加载其他人的 Adapter,在此基础上进行微调或预测,如果改进效果良好,还可以再次分享新的 Adapter,从而形成一种高效的社区合作机制,大大提升了研究效率。我们尝试了各种改进,包括使用 Evoformer 方法,但信息泄露问题依然存在,直到尝试了 Foldseek,我们发现得到的 SaProt 模型在 AlphaFold 预测的结构数据上 loss 能够下降,在真实 PDB 结构数据上 loss 同样显著下降,满足了我们的预期。原创 2025-04-07 18:08:39 · 1159 阅读 · 0 评论 -
无需预对齐即可消除批次效应,东京大学团队开发深度学习框架STAIG,揭示肿瘤微环境中的详细基因信息
如前文所述,基于 GNN 的方法可以利用空间邻接信息构建图结构,使模型在捕捉基因表达的同时,也能学习到细胞间的空间依赖关系,而对比学习的引入进一步增强了模型的泛化能力,使其能够在没有标注的情况下学习到关键的空间特征。如下图 d 部分,对于通过边相连的测点,在图像嵌入空间中计算其距离,并利用 SoftMax 函数将这些距离转换为随机边移除的概率,原始图在此基础上经历两轮随机边移除 (Edge Random Removal),从而生成两个增强视图,接着,对这些视图中的节点特征进行随机掩码处理。原创 2025-04-03 19:58:54 · 875 阅读 · 0 评论 -
模拟医生会诊,四川大学华西医院团队开发多智能体对话框架助力疾病诊断
综上所述,本研究成功开发了一种用于疾病诊断的多智能体对话框架 (MAC),该框架可在临床咨询的不同阶段提供有价值的诊断建议并推荐进一步的诊断,适用于所有类型的罕见病。使用来自 Medline 数据库的真实临床病例报告,研究人员评估了 GPT-3.5、GPT-4 和 MAC 对 302 种罕见疾病的知识和诊断能力。在特定案例的病症诊断中,如下图所示,研究人员发现 GPT-3.5 和 GPT-4 能够基于明显症状诊断疾病,例如通过临床表现识别心包炎和癫痫,然而,它们在探究疾病的根本原因方面存在不足。原创 2025-04-02 17:29:53 · 1116 阅读 · 0 评论 -
在线教程丨YOLO系列重要创新!清华团队发布YOLOE,直击开放场景物体实时检测与分割
这项基于单阶段 (One-Stage) 检测架构的端到端目标检测技术,在 10 年间已经更新了十余个版本,凭借高精度且高帧率图像的实时处理,广泛应用于自动驾驶、医疗影像分析、机器人视觉等多个领域。3.选择「NVIDIA RTX 4090」以及「PyTorch」镜像,OpenBayes 平台上线了新的计费方式,大家可以按照需求选择「按量付费」或「包日/周/月」,点击「继续执行」。1.登录 hyper.ai,在「教程」页面,选择「YOLOE:实时看见一切」,点击「在线运行此教程」。原创 2025-04-01 16:35:16 · 728 阅读 · 0 评论 -
入选CVPR 2025!深圳大学团队等提出EchoONE,可精准分割多切面超声心动图
EchoONE 模型致力于解决多切面分割这一复杂挑战,通过引入一种创新的密集提示学习模块——PC-Mask,以可组合的方式利用先验结构知识,在分割过程中提供有效的切面特定语义指导。在实际操作中,超声医生需要从不同位置和角度对心脏进行扫查,以获取多个切面的超声图像,后综合各切面图来对心脏结构和功能进行分析,包括识别心肌轮廓、测量各个腔室大小等。然而,由于不同切面之间存在显著的结构差异,现有分割模型在多切面图上的泛化能力较弱,通常需要针对每个特定切面进行单独定制,导致重复开发的成本较高。以适应局部特性的融合。原创 2025-03-31 17:27:34 · 924 阅读 · 0 评论 -
新加坡国立大学张阳团队开发第二代RNA结构预测算法,多项基准测试超越SOTA
其中,TM-score 是长度无关的打分函数,用于评估预测 RNA 结构的整体质量,取值范围 0-1,值越高表示预测结构与真实结构的相似度越高。RNA,尤其是非编码 RNA (ncRNA),能够折叠成特定结构,并在基因调控 (如转录和翻译)、催化、生物信号传导、应激反应等多种细胞过程中发挥重要作用。值得注意的是,研究人员排除了 CASP15 数据集中大型合成 RNA 结构,因为它们偏离了自然界中的 RNA 结构,而自然 RNA 结构是功能分析和药物设计的主要研究对象。原创 2025-03-27 18:54:14 · 983 阅读 · 0 评论 -
精度提升5.2%,英伟达等发布多模态医学影像分割模型,实现三维影像自动分割与交互
在 2023 年,AI 在医学成像中的应用主要集中在辅助诊断方面。在模型训练阶段,研究团队还整合了 11,454 例 CT 扫描数据,采用半监督学习框架下的伪标签生成机制,结合四阶段渐进式训练策略,首先在混合数据集(含伪标签与超体素标注)进行预训练,随后分别在自动分割与交互修正任务进行微调,最终通过联合训练实现功能集成。与传统方法相比,该研究在统一的处理框架内,通过单阶段的方法对未对齐的多模态医学图像同时进行对齐和融合,不仅实现了双重任务的协调,也有效降低了因引入多个独立特征编码器而导致模型复杂的问题。原创 2025-03-26 17:11:45 · 1450 阅读 · 0 评论 -
AlphaFold应用新里程碑!剑桥大学团队提出AlphaFold-Metainference,精准预测无序蛋白质结构集合
无独有偶,来自丹麦哥本哈根大学的研究团队以「Conformational ensembles of the human intrinsically disordered proteome」为题,在 Nature 上发布了一篇关于无序蛋白质研究的文章,其中讨论了利用多种深度学习方法预测 IDP 的无序区域、构象集合及相关属性,包括的深度学习方法如上文提到的 AlphaFold,以及蛋白质语言模型、生成对抗网络等。该方法大大扩展了基于深度学习的蛋白质结构预测范围,为无序蛋白质结构预测提供了一个新思路。原创 2025-03-24 17:32:20 · 875 阅读 · 0 评论 -
华科大/上海AI Lab/上海交大科研先锋深度分享:最新成果,顶会投稿经验,跨学科合作挑战……
作者:十九编辑:李宝珠转载请联系本公众号获得授权,并标明来源华中科技大学黄宏副教授、上海人工智能实验室 AI for Sciense 中心青年研究员周东展、上海交通大学自然科学研究院的助理研究员周冰心共同探讨了 AI 在社会科学、物理化学、生命科学领域的前沿发展,并分享了各自在选择科研方向上的见解,以及对 AI 顶会的投稿经验。人工智能融合了计算机科学、数学、统计学、认知科学等多个学科,其发展高度依赖跨学科人才的培养。原创 2025-03-18 17:12:33 · 706 阅读 · 0 评论 -
准确率远超初级皮肤科医生,北大国际医院等开发深度学习算法,实现痤疮病变检测与分级
它可以帮助科学家处理和分析海量的数据,加速科学研究的进程。在前瞻性评估中,AcneDGNet 基于 AcnePKUIH 数据集进行测试,并与两位有 5 年以上经验的初级皮肤科医生(JD1 和 JD2)以及两位有 10 年以上经验的高级皮肤科医生(SD1 和 SD2)的诊断结果进行了对比 ,如图。在在线医疗场景中,科研人员从 AcnePA1 和 AcnePA2 数据集中精心挑选了测试数据,这些数据均来自患者使用智能手机拍摄并上传的图像,如下图所示,真实地反映了在线医疗中图像采集的实际情况。原创 2025-03-21 13:47:14 · 1014 阅读 · 0 评论 -
医生培训迎来 DeepSeek 外挂!上体/上交/清华合作研究证实大模型可成为基层医生培训 「黄金搭档」
在全球健康版图上,糖尿病正以「海啸级」的凶猛态势侵袭着人类的健康防线。经过一系列技术迭代和创新,DeepDR-LLM 系统不仅显著提升了糖尿病护理培训的质量,让医生能够更高效地掌握前沿知识和诊断技巧,更为临床实践提供了切实可行的高效技术支持,为糖尿病患者带来了更精准、更及时的诊疗希望。随着 LLM 技术的持续优化以及临床应用的不断拓展,更多令人期待的创新成果有望落地生根,为广大患者带来实实在在的健康福祉,为全球医疗体系的蓬勃发展注入源源不断的智慧与活力,让医疗事业在科技的推动下绽放更加绚烂的光彩。原创 2025-03-20 15:40:03 · 1087 阅读 · 0 评论 -
入选ICLR 2025!剑桥大学提出Celcomen模型,首次在空间转录组学分析中实现因果推断可识别性
而这一点对于揭示组织疾病状态背后的机制至关重要。本研究取得的相关成果是对空间转录组学的又一次发展——空间转录组技术是生物信息学领域近年来的重大突破之一,该技术通过提供详细的、空间定位的分子特征,极大地改变了生物医学研究范式,使生物学研究人员能够以前所未有的分辨率阐明组织结构和功能。展望未来,通过利用 AI 的强大计算能力和深度学习算法,研究人员有望解锁空间转录组学的全新维度,显著提升疾病研究、药物开发和个性化医学的效率,使科学家能够以前所未有的精度探索生物系统的空间异质性,从而带来开创性的科学发现。原创 2025-03-17 17:24:38 · 837 阅读 · 0 评论 -
计算效率提升3000倍!崂山实验室等提出海洋环境智能预报大模型「问海」,性能优于数值海洋预报
海洋初始场来自法国麦卡托海洋国际中心 GLO12v4 预报系统,大气预报场来自欧洲中期天气预报中心 IFS HRES 预报系统,观测数据包括 Argo 测量的温盐剖面、卫星遥感的海表面高度以及漂流浮标测量的海表面温度和近海表流速。特别的,由于「双惩罚」问题的存在,传统的点对点误差指标,如均方根误差 (RMSE),并不适用于评估高分辨率预报系统的性能。2024 年 4 月至 11 月的回报结果表明,「问海」大模型对于未来 10 天的温度、盐度、流速、海平面高度的预报性能优于 GLO12v4 数值预报系统。原创 2025-03-14 14:51:18 · 706 阅读 · 0 评论 -
入选AAAI 2025!清华/伦敦大学学院等首创蛋白质-RNA语言模型融合方案,结合亲和力预测刷新SOTA
PredPRBA 和 DeepNAP 支持蛋白质-RNA 对亲和力预测,研究人员将这些方法在 PRA201 数据集上的表现进行了比较,结果显示,尽管 PRA201 中至少有 100 个样本出现在它们的训练集中,但它们在 PRA201 上的性能明显低于它们报告的结果,表明这些方法的泛化能力较差。理解蛋白质-RNA 结合的机制是揭示复杂基因调控过程和解析疾病的遗传基础的关键,同时,蛋白质-RNA 相互作用在 RNA 靶向治疗中也具有重要应用,为癌症、遗传性疾病及病毒性疾病的治疗提供了新的方向。原创 2025-03-13 16:10:55 · 540 阅读 · 0 评论 -
David Baker团队新成果!RFdiffusion再进化,实现原子级精度的抗体从头设计
为了设计 VHHs,研究人员选择了一个广泛使用的嵌合 VHH 框架作为基础,针对一系列与疾病相关的靶点,包括艰难梭菌毒素 B (TcdB)、流感 H1 血凝素 HA 等,通过 ProteinMPNN 在目标背景下进行 CDR 环序列设计,然后使用微调的 RoseTTAFold2 网络进行筛选。当时,白喉如同死神的镰刀,无情地夺走许多儿童的生命。然而,scFv 的基因合成面临挑战,一方面,scFv 序列较长,难以通过常规寡核苷酸对进行组装,另一方面,scFv 之间高度序列同源,特异性配对难度大。原创 2025-03-11 15:38:10 · 1445 阅读 · 0 评论 -
首次实现分子生成与性质预测的统一,清华团队提出两阶段扩散生成机制,入选ICLR 2025
即使冻结生成模型的权重,并为性质预测任务添加一个单独的 head 以保持生成性能,研究人员观察到与从头开始训练相比,性质预测的性能并没有改善。我们相信,创新的两阶段生成过程及其相应的模型为分子生成框架的发展提供了新的范式,并可能激发更多高级分子生成框架的开发,进而惠及更多特定应用领域的分子生成。对于性质预测,固定网络输入的时间步为零,并使用性质预测 head。此外,研究人员还测试了 UniGEM 在条件生成任务中的表现,通过在采样过程中使用模型自带的性质预测模块作为指导,避免了重新训练条件生成模型的需求。原创 2025-03-06 15:04:29 · 836 阅读 · 0 评论 -
模型参数超 RFdiffusion 5倍!英伟达等发布 Proteina,从头设计蛋白质主链性能达 SOTA
TRDesign 通过大量学习蛋白质序列与结构的关系,能够准确探索出蛋白质可折叠空间所有潜在的可能性,将蛋白质折叠中学到的序列-结构-功能关联反向映射,端到端地从头进行蛋白质设计、检测并进行稳定性、亲和力优化,从而设计出更符合需求的蛋白质结构。此外,Proteina 调整了流匹配目标以适应蛋白质结构生成,并探索了分阶段训练策略,如使用 LoRA 对模型进行微调,使其能够生成天然的、可设计的蛋白质,还为分层折叠类别条件约束开发了新的引导方案,并成功展示了自引导以增强蛋白质的可设计性。原创 2025-03-04 16:12:09 · 903 阅读 · 0 评论 -
入选ICLR 2025!浙大沈春华等人提出玻尔兹曼对齐技术,蛋白质结合自由能预测达SOTA
另外,其所在的计算机辅助设计与图像系统全国重点实验室作为连接「产-学-研」的接口,也在近年实现多面开花,与包括蚂蚁在内的多家企业合作,成为了科研的创新基地、人才的培养基地、创新的孵化基地。研究团队在结合自由的计算公式中代入了贝叶斯定理,即 p(X|S) = p(S|X)・p(X)/p(S),成功将结合自由能与蛋白质序列的条件概率 p (X|S) 联系起来,避免了直接估计 p (X|S) 的难题,为后续进一步分析结合自由能变化与蛋白质序列条件概率的关系奠定了基础。通过比较自动和人工排序的一致性评估,原创 2025-03-03 16:27:48 · 860 阅读 · 0 评论