ScienceAI
文章平均质量分 91
                                HyperAI超神经
                链接人工智能新场景
              
              展开
            专栏收录文章
- 默认排序
 - 最新发布
 - 最早发布
 - 最多阅读
 - 最少阅读
 
- 
          
              
黄仁勋最新演讲:10亿美元投资诺基亚,Rubin明年量产,AI工厂推进落地……
同时发布 Omniverse DSX 数字孪生平台,用于设计并运营 100 兆瓦至千兆瓦级 AI 工厂,每年可带来数十亿美元的额外收入,已在弗吉尼亚州马纳萨斯的 AI 工厂研究中心得到验证,帮助全球合作伙伴打造人工智能基础设施。使用越多,就需要更多算力;3 月的 GTC 上,黄仁勋曾笑称 GTC 是 「AI 行业的超级碗」。总结来看,在这场信息含量极高、技术更新密集的主旨演讲中,从大规模 GPU 部署和量子突破,到人工智能工厂、机器人技术,黄仁勋从多角度分享了英伟达在 AI 基础设施建设上的能力与价值。原创 2025-10-29 13:14:13 · 1056 阅读 · 0 评论 - 
          
              
准确率达91%!Reac-Discovery融合数学建模/机器学习/自动化实验,解决自驱动实验室系统通用性难题
自驱动实验室系统提高了化学反应器设计的速度和精度,但现有研究缺乏针对几何参数的统一模型。针对不同体系间的通用性问题,来自西班牙 IMDEA 材料研究所的研究团队推出了 Reac-Discovery 半自主数字平台,基于周期性开孔结构,推出了先进催化反应器的创新解决方案。原创 2025-10-28 12:56:28 · 941 阅读 · 0 评论 - 
          
              
MIT团队开源BoltzGen,可跨分子类型设计蛋白结合物,66%靶标获纳摩尔级亲和力
麻省理工学院与Boltz等机构合作开发了全原子生成模型BoltzGen,统一了结构预测与结合体设计。该模型采用几何连续表示和扩散模块,实现了蛋白折叠、结合位点建模与序列生成的原子级精度同步优化。实验显示,BoltzGen设计的纳米抗体和蛋白结合体在66%的靶标上达到纳摩尔级亲和力,并成功应用于多肽、小分子等多种生物分子设计。研究通过跨模态训练策略和灵活的设计规范语言,解决了传统方法计算成本高、通用性有限的问题,为AI驱动的药物研发提供了高效可控的新工具。相关成果已开源,代码发布于GitHub。原创 2025-10-27 14:44:26 · 649 阅读 · 0 评论 - 
          
              
谷歌多团队联手打造 Earth AI,聚焦3大核心数据,地理空间推理能力提升 64%
Google 多个团队联合提出 「Earth AI」 地理空间人工智能模型与智能推理系统,构建可互操作的 GeoAI 模型家族,并通过定制化推理 Agent 实现多模态数据的协同分析。该系统聚焦影像、人口、环境三大核心数据类型,借助 Gemini 驱动的 Agent 串联三类模型,突破了单点模型的局限,使非专业用户也能执行跨领域实时分析,推动地球系统研究迈向可行动的全局洞察。原创 2025-10-24 14:58:57 · 617 阅读 · 0 评论 - 
          
              
MIT基于物理先验构建生成式AI模型,仅需单一光谱模态输入,达到实验相关性高达99%的跨模态光谱生成
麻省理工的研究团队提出了一种物理先验生成式人工智能模型 SpectroGen,仅需单一光谱模态的输入,就能实现与实验结果相关性达 99% 的跨模态光谱生成。原创 2025-10-23 13:43:11 · 918 阅读 · 0 评论 - 
          
              
入选NeurIPS 2025,英伟达提出ERDM模型,解长期预报难题,中远期预报持续领先EDM基准
英伟达与加州大学圣迭戈分校的研究团队在阐明扩散模型(EDM)框架基础上,面向序列建模需求,系统改进了噪声调度、去噪网络参数化、预处理流程、损失加权策略及采样算法,构建出增强型序列扩散模型(ERDM)。该研究重点攻克了「渐进式噪声调度」与「时间损失加权」的协同设计问题,为混沌动力系统的概率预测提供了新的高效路径。原创 2025-10-20 15:24:39 · 605 阅读 · 0 评论 - 
          
              
MOF结构36年终获诺奖:当AI读懂化学,金属有机框架正迈向生成式研究时代
2025 年 10 月 8 日,为金属有机框架领域研究作出贡献的北川进、Richard Robson 和 Omar Yaghi 荣获诺贝尔化学奖。金属有机框架领域历经三十余年,完成了从结构设计到产业化的演进,奠定了化学可计算的基础。如今,人工智能正以生成模型和扩散算法重塑 MOF 研究,开启化学设计的全新时代。原创 2025-10-17 16:25:50 · 1438 阅读 · 0 评论 - 
          
              
AI预判等离子体「暴走」,MIT等基于机器学习实现小样本下的等离子体动力学高精度预测
麻省理工学院牵头的研究团队利用科学机器学习,将物理定律与实验数据智能融合。开发了一种神经状态空间模型,通过少量数据就能预测托卡马克配置变量 (TCV) 缓降过程中的等离子体动力学,以及可能出现的不稳定情况。原创 2025-10-16 11:57:41 · 1002 阅读 · 0 评论 - 
          
              
入选NeurIPS 2025,多伦多大学等提出Ctrl-DNA框架,实现特定细胞基因表达的「靶向控制」
多伦多大学团队联合昌平实验室等开发了一种名为 Ctrl-DNA 的约束强化学习框架,可最大化 CRE 在目标细胞中的调控活性,同时严格限制其在非目标细胞中的活性。原创 2025-10-15 13:12:49 · 1004 阅读 · 0 评论 - 
          
              
香港科技大学等提出增量天气预报模型VA-MoE,参数精简 75% 仍达 SOTA 性能
香港科技大学与浙江大学等研究团队推出「变量自适应专家混合模型(VA-MoE)」。该模型通过分阶段训练与变量索引嵌入机制,引导不同专家模块专注特定类型的气象变量,当新增变量或站点时,无需全量重训即可实现模型扩展,在保障精度的同时大幅降低计算开销。原创 2025-10-13 15:02:01 · 764 阅读 · 0 评论 - 
          
              
定向设计目标稳定材料,麻省理工学院开发SCIGEN,可适配任意预训练扩散模型
麻省理工学院李明达教授团队等提出 SCIGEN 几何结构约束集成方法,可适配任意预训练生成式扩散模型,用以整合对称性和几何图案约束,从而生成含特殊限定的目标材料。原创 2025-10-09 14:06:27 · 797 阅读 · 0 评论 - 
          
              
新材料研发提速!上交大团队开发新AI材料设计模型CGformer,融合全局注意力机制
上海交通大学人工智能与微结构实验室李金金教授和黄富强教授团队研发出全新 AI 材料设计模型 CGformer,成功突破传统晶体图神经网络局限。原创 2025-09-29 14:53:34 · 1086 阅读 · 0 评论 - 
          
              
英伟达提出ReaSyn,借鉴思维链类比分子合成,实现超高重建率与路径多样性
英伟达研究团队推出融合推理能力的高效可合成分子投影框架 ReaSyn,采用反应链表示法,将合成路径视为 LLM 的 CoT 推理路径,为破解分子合成的现实难题开辟了新路径。它借鉴大型语言模型中的 「思维链推理」 思想,从技术底层为解决可合成分子设计的核心痛点提供了新思路。原创 2025-09-26 14:33:34 · 1110 阅读 · 0 评论 - 
          
              
机器学习 vs. 动力学模型,Ai2 最新研究:仅需 2 分钟,ACE2 可完成一次 4 个月季节预报
英国埃克塞特哈德利中心气象局、埃克塞特大学以及美国艾伦人工智能研究所(Ai2)共同组成的研究团队,对此前开发的机器学习天气模型 ACE2 进行了评估,并将其与主流基于物理的海气耦合集合预报系统 GloSea 进行对比。研究首次证明,机器学习天气模型能够生成具备高技巧的全球季节预测,为深化理解短期气候变异机制、发展新一代预报技术并推动业务预报进步,提供了新的可能方向。原创 2025-09-22 14:03:47 · 1256 阅读 · 0 评论 - 
          
              
谷歌 DeepMind 冲击千禧年大奖新进展,利用 AI 方法在 3 个流体方程中发现新的不稳定奇点
谷歌 DeepMind 联合纽约大学、斯坦福大学、布朗大学等机构的研究人员,基于机器学习框架以及高精度的高斯-牛顿优化器,在 3 个不同的流体方程中首次系统地发现了新的不稳定奇点,并揭示出一条简洁的经验渐近公式,将爆破速率与不稳定阶数联系起来。原创 2025-09-19 17:31:53 · 838 阅读 · 0 评论 - 
          
              
准确度提升400%!印度季风预测模型基于36个气象站点,实现城区尺度精细预报
近年来,孟买极端降雨频率与强度显著上升,而传统全球预报系统因分辨率不足难以捕捉局地天气特征。为此,印度理工学院孟买分校与马里兰大学合作,开发了基于卷积神经网络与迁移学习的预测模型,实现了对极端降雨事件的提前预报。原创 2025-09-17 14:27:44 · 967 阅读 · 0 评论 - 
          
              
IJCAI 2025丨7个数据集验证:scSiameseClu 在无监督单细胞聚类任务中达到 SOTA 性能
来自中国科学院、东北农业大学、澳门大学与吉林大学的研究团队联合提出了一种用于解读单细胞 RNA-seq 数据的新型孪生聚类框架 scSiameseClu,能够有效缓解表征坍塌问题,实现更清晰的细胞群体分类,为 scRNA-seq 数据的分析提供了强大的工具。原创 2025-09-15 16:08:51 · 748 阅读 · 0 评论 - 
          
              
Nature子刊 | 清华-MIT联合团队提出大语言模型驱动的智能城市规划框架
由清华大学电子工程系城市科学与计算研究中心、建筑学院与麻省理工学院(MIT)感知城市实验室、美国东北大学等顶尖机构的学者组成的跨学科团队,首次系统性地提出了一个由大语言模型(LLM)驱动的智能城市规划框架,旨在将 AI 打造为人类的「智能规划助手」。原创 2025-09-11 14:22:50 · 1186 阅读 · 0 评论 - 
          
              
从伦理保障到病史管理,武汉大学等提出Healthcare Agent,问诊主动性及相关性超越GPT-4等闭源模型
为解决大语言模型(LLM)在医疗问诊应用中引导能力不足、医疗伦理缺失及病史管理困难等问题,武汉大学与南洋理工大学联合研发了 Healthcare Agent,通过对话、记忆与处理三大组件识别患者意图、自动检测伦理与安全问题,并支持医护人员介入干预和生成咨询报告。该无需重新训练模型的新路径显著降低了计算成本,提升了系统灵活性与适应性,为 LLM 在医疗领域的更广泛应用提供了新范式。原创 2025-09-11 14:18:27 · 975 阅读 · 0 评论 - 
          
              
从「盲筛」到 「精准定位」,中国石油大学团队推出AlphaPPIMI,PPIs 界面调节剂预测性能超越现有方法
在生命的复杂调控网络中,蛋白质-蛋白质相互作用(PPIs)协调着细胞内的信号传递、能量代谢和基因活动,是维持生命正常运转的基础。无论是健康状态下的生理平衡,还是疾病发生时的异常变化,PPIs 都发挥着核心作用。研究表明,PPIs的失常与癌症、神经退行性疾病及多种感染性疾病密切相关。因此,针对 PPIs 的药物开发已成为一个新药研发的重要方向。早期科学家通过研究如 MDM2-p53 等蛋白质间相互作用,证实干预这类互作具有治疗疾病的潜力,尤其为以往难以靶向的疾病靶点提供了新思路。原创 2025-09-09 16:07:03 · 1111 阅读 · 0 评论 - 
          
              
关联基因表达数据与细胞形态图像,港中文等开发转录组引导的扩散模型,为表型药物研发提速
中国香港中文大学、穆罕默德·本·扎耶德人工智能大学等机构的研究人员提出一个可扩展的转录组引导扩散模型——MorphDiff,专门用于高保真模拟细胞形态对扰动的响应过程。原创 2025-09-08 16:02:22 · 1017 阅读 · 0 评论 - 
          
              
Meta AI等提出全新蛋白质动态融合表征框架FusionProt,实现迭代式信息交换,多项任务性能达到SOTA
以色列理工学院联合 Meta AI 的研究团队,提出了一种名为 FusionProt 的新型蛋白质表征学习框架。引入创新性的可学习融合 token,在 PLM 和蛋白质的三维结构图之间进行迭代信息交换,在多种生物学任务上性能达到 SOTA。原创 2025-09-04 16:31:35 · 822 阅读 · 0 评论 - 
          
              
大气所研发 CoTCN 模型显著提升全球海表温度预报精度, 1 天 SST 预报误差仅 0.2°C
在 2025 CCF 全球高性能计算学术大会上,中国科学院大气物理研究所林鹏飞研究员团队报告了一项重要研究成果。在全球海表面温度短期预报领域取得突破,为海洋环境预报提供了关键技术支撑。HyperAI超神经在不违原意的前提下,对林鹏飞研究员的深度分享进行了整理汇总,以下为演讲实录。原创 2025-09-03 13:32:52 · 1167 阅读 · 0 评论 - 
          
              
从GPT-3负责人到Anthropic CTO,Tom Brown谈创业经验、Scaling Law与芯片供应链依赖
在与 Y Combinator 的访谈中,Anthropic 首席技术官 Tom Brown 回顾了自己从创业到 AI 研究的转型之路。他谈到「需求匹配度」以及「Scaling Laws」带来的影响,解释了离开 OpenAI 创办 Anthropic 的原因,并谈及了 Claude 系列模型在迭代中遭遇的困难与突破,同时透露了 Anthropic 在多芯片战略与安全愿景上的考量。原创 2025-09-02 15:52:45 · 529 阅读 · 0 评论 - 
          
              
全球水体健康诊断,香港科技大学团队提出时空插补与预测模型,实现沿海叶绿素a时空分布精准预测
针对沿海生态系统健康诊断问题,香港科技大学团队提出了时空插补和预测(STIMP)模型,通过集成专门设计的模块实现了叶绿素 a 时空分布的精准预测,相较于传统的水动力-生物地球化学耦合过程和数据驱动预测方法,解决了数据不完整、时间非平稳变化和空间异质性的三大难题,为预测时空限制条件下的海洋叶绿素 a 提供了新的路径。原创 2025-09-01 11:11:24 · 844 阅读 · 0 评论 - 
          
              
提升科学数据可用性,中科院张正德团队提出基于智能体的 AI-Ready 数据加工和供给方案
在 2025CCF 全国高性能计算学术大会上,高能物理研究所计算中心 AI4S 负责人张正德研究员,围绕智能体技术如何应用于 AI-Ready 数据的处理进行了深度分享。原创 2025-08-28 11:46:36 · 1057 阅读 · 0 评论 - 
          
              
多模态模型加速新材料与工业应用匹配,无需完整晶体结构即可预测材料性质
加拿大多伦多大学化学工程与应用化学系的研究团队,提出了一种多模态机器学习方法,该方法利用 MOFs 合成后即可获得的信息:PXRD 和合成中使用的化学物质,识别出了那些在与最初报道的应用不同的领域具有潜力的 MOFs,该研究加速了金属有机框架(MOFs)的合成与应用场景的连接。原创 2025-08-27 14:11:42 · 732 阅读 · 0 评论 - 
          
              
推理速度快50倍,MIT团队提出FASTSOLV模型,实现任意温度下的小分子溶解度预测
麻省理工学院研究团队结合化学信息学工具与全新有机溶解度数据库 BigSolDB,在 FASTPROP 与 CHEMPROP 模型架构的基础上进行了改进,使模型能够同时输入溶质分子、溶剂分子及温度参数,直接对 logS 进行回归训练。在严格的溶质外推场景下,相较 Vermeire 等人的 SOTA 模型,优化后模型的 RMSE 降低了 2–3 倍;同时,架构相对简洁,推理速度提升最高达 50 倍。原创 2025-08-26 15:01:48 · 639 阅读 · 0 评论 - 
          
              
以结构/序列/功能之间的关系重新定义蛋白质语言模型的分类:李明辰博士详解蛋白质语言模型
在上海交通大学主办的第三届「AI for Bioengineering 暑期学校」中,上海交通大学自然科学研究院洪亮课题组博士后李明辰以「蛋白质与基因组基础大模型」为主题,向大家分享了蛋白质与基因组基础大模型的最新研究进展和技术突破。原创 2025-08-25 13:01:01 · 1093 阅读 · 0 评论 - 
          
              
AI 助力高效生物制造,从 β-苯乙醇和谷胱甘肽研究探索智能生产新范式
在 2025 年上海交通大学 AI For Bioengineering 暑期学校中,来自华东理工大学的庄英萍教授围绕「AI 助力高效生物制造过程」展开分享,从生物制造与合成生物学的关系、合成生物学产品应用领域、智能生物制造技术及实践等三个方面介绍了技术体系和团队成果。本文为庄英萍教授的分享精华实录。原创 2025-08-21 13:06:16 · 1237 阅读 · 0 评论 - 
          
              
康奈尔大学首创「微波大脑」芯片,同时处理超高速数据和无线通信信号,176 毫瓦功耗下准确率达 75%
康奈尔大学团队提出一种名为微波神经网络(Microwave Neural Network,MNN)的集成电路,可同时处理超高速数据和无线通信信号,其凭借低功耗、小体积优势,可为高带宽应用提供全新解决方案。原创 2025-08-20 13:11:40 · 1199 阅读 · 0 评论 - 
          
              
输出方差显著降低!UCLA发布双向布朗桥扩散模型,提升虚拟染色结果可重复性
针对成像质谱的组织化学染色问题,UCLA 研究团队提出了一种基于扩散模型的虚拟组织学染色方法,能够增强空间分辨率,并以数字化的方式将细胞形态对比度引入无标记人体组织的质谱图像中,实现了基于低分辨率 IMS 数据预测高分辨率细胞组织病理结构。此外,该研究还优化了扩散模型的噪声采样策略,实现了可重复的虚拟染色。原创 2025-08-14 13:07:54 · 1393 阅读 · 0 评论 - 
          
              
覆盖近 1.5 万个物种,谷歌 DeepMind 发布 Perch 2.0,刷新生物声学分类检测 SOTA
Google DeepMind 与 Google Research 联合推出的 Perch 2.0,进一步将生物声学研究推向新高度。相较于前代,Perch 2.0 以物种分类为核心训练任务,不仅纳入了更多非鸟类类群的训练数据,还采用了全新的数据增强策略与训练目标,在 BirdSET 和 BEANS 两项权威生物声学基准测试中均刷新当前 SOTA。原创 2025-08-11 14:55:41 · 987 阅读 · 0 评论 - 
          
              
设计蛋白变体活性提升50倍!清华AIR周浩团队基于贝叶斯流网络提出AMix-1,实现可扩展通用的蛋白质设计
清华大学智能产业研究院(AIR)周浩课题组联合上海人工智能实验室,基于贝叶斯流网络提出蛋白质基座模型 AMix-1,首次以 Pretraining Scaling Law、Emergent Ability、In-Context Learning 和 Test-time Scaling 的系统化方法论来构建蛋白质基座模型,将大语言模型的成功范式引入蛋白质设计,并通过 Test-time Scaling 和真实实验验证了其高效性和通用性。原创 2025-08-07 11:46:17 · 718 阅读 · 0 评论 - 
          
              
登 Science,David Baker 团队提出无序区域结合蛋白设计新方法,专攻不可成药靶点
针对天然无序蛋白质的靶向问题,David Baker 及其团队提出了一种名为 Logos 的蛋白质设计策略,使蛋白质可以结合具有多种延伸构象的天然无序蛋白质区域,侧链可插入互补的结合口袋。原创 2025-08-06 11:51:54 · 943 阅读 · 0 评论 - 
          
              
在线教程丨Qwen3-Coder-Flash刷新开源AI编程SOTA,Agentic能力媲美Claude4
3.选择「NVIDIA RTX A6000-2 48GB」以及「vllm」镜像,按照需求选择「按量付费」或「包日/周/月」,点击「继续执行」。Qwen3-Coder-Flash 的开源也证实这一趋势,成为针对现实开发场景设计并不断更新的的效率引擎,重新定义了轻量级 AI 工具的架构与潜力边界,最终实现 AI 生产力的真正常态化。1.进入 hyper.ai 首页后,选择「教程」页面,并选择「一键部署 Qwen3-Coder-30B-A3B-Instruct」,点击「在线运行此教程」。原创 2025-08-05 14:08:02 · 448 阅读 · 0 评论 - 
          
              
登Nature子刊,基于基因测序和机器学习的废水流行病学评估,病毒检出时间最高提前4周
通过对废水样本的 SARS-CoV-2 基因组测序数据进行质量控制,过滤低质量读段和噪声突变,构建「突变频率矩阵」,用行代表样本,列代表突变位点,值为该位点在样本中的突变频率。,提升了统计效力,从而实现了更早的检测。为了验证和评估 ICA-Var 的性能,研究团队将其与现行的金标准工具 Freyja 进行了对比,后者是一种用于估算废水中存在的新冠病毒谱系相对丰度的工具,利用一个由界定谱系的突变所构成的「条形码」文库,来唯一确定所有已知的新冠病毒谱系,并采用深度加权、最小绝对偏差回归方法来求解谱系丰度。原创 2025-08-04 16:12:15 · 717 阅读 · 0 评论 - 
          
              
1 分钟内完成 15 天预报,英伟达/UC 伯克利等提出机器学习天气预报系统 FCN3,支持单卡极速推理
英伟达、美国劳伦斯伯克利国家实验室、加州大学伯克利分校、美国加州理工学院的联合研究团队,推出了 FourCastNet 3(FCN3),这是一个将球面信号处理与隐马尔可夫集合框架相结合的概率机器学习天气预报系统原创 2025-07-31 13:35:44 · 873 阅读 · 0 评论 - 
          
              
从动物毒液中挖掘386种全新抗菌肽,宾夕法尼亚大学开发深度学习模型APEX,筛选潜在抗生素候选物
美国宾夕法尼亚大学的研究团队整合四大毒液数据库构建全球毒液数据库,应用了一种名为 APEX 的序列到功能深度学习模型,专门用于系统性挖掘毒液蛋白质组中的潜在抗菌候选物,最终筛选出 386 条具有抗菌潜力且与已知 AMPs 序列相似度低的候选肽。原创 2025-07-30 11:36:42 · 713 阅读 · 0 评论 - 
          
              
支持蛋白质生成/折叠/逆折叠,湖大/中科大/字节提出APM模型,实现全原子设计与功能优化
湖南大学联合中国科学院大学、字节跳动 Seed 团队提出了一种全新全原子蛋白质生成模型 APM(All-Atom Protein Generative Model),该模型整合原子级信息,支持多链蛋白质的生成、折叠、逆折叠任务,无需依赖伪序列的连接方式,在抗体设计、结合肽设计等下游任务中实现超越现有 SOTA 性能。原创 2025-07-24 12:02:10 · 1420 阅读 · 0 评论 
                                          分享