题目描述
判断给定的链表中是否有环。如果有环则返回true,否则返回false。
数据范围:链表长度0≤ n ≤ 10000, 链表中任意节点的值满足 |val| <= 100000
要求:空间复杂度 O(1),时间复杂度 O(n)
输入分为2部分,第一部分为链表,第二部分代表是否有环,然后将组成的head头结点传入到函数里面。-1代表无环,其它的数字代表有环,这些参数解释仅仅是为了方便读者自测调试。实际在编程时读入的是链表的头节点。
例如输入{3,2,0,-4},1时,对应的链表结构如下图所示:
示例1
输入:
{3,2,0,-4},1
返回值:
true
说明:
第一部分{3,2,0,-4}代表一个链表,第二部分的1表示,-4到位置1,即-4->3存在一个链接,组成传入的head为一个带环的链表,返回true
示例2
输入:
{1},-1
返回值:
false
说明:
第一部分{1}代表一个链表,-1代表无环,组成传入head为一个无环的单链表,返回false
示例3
输入:
{-1,-7,7,-4,19,6,-9,-5,-2,-5},6
返回值:
true
待填空
/**
* Definition for singly-linked list.
* class ListNode {
* int val;
* ListNode next;
* ListNode(int x) {
* val = x;
* next = null;
* }
* }
*/
public class Solution {
public boolean hasCycle(ListNode head) {
}
}
思路
我们可以运用数学思想,定义两个不同速度的指针,其中速度较快的指针速度为较慢指针的两倍,这样在相同时间下,如果两个指针相等,则表示相遇,此时两个指针刚好相差一周,由此说明环存在。
题解
public boolean hasCycle(ListNode head){
ListNode fast = head;
ListNode slow = head;
while (fast != null && fast.next !=null){
fast = fast.next.next;
slow = slow.next;
if(fast == slow){
return true;
}
}
return false;
}