算法题:判断链表中是否存在环

题目描述

判断给定的链表中是否有环。如果有环则返回true,否则返回false。

数据范围:链表长度0≤ n ≤ 10000, 链表中任意节点的值满足 |val| <= 100000
要求:空间复杂度 O(1),时间复杂度 O(n)

输入分为2部分,第一部分为链表,第二部分代表是否有环,然后将组成的head头结点传入到函数里面。-1代表无环,其它的数字代表有环,这些参数解释仅仅是为了方便读者自测调试。实际在编程时读入的是链表的头节点。
例如输入{3,2,0,-4},1时,对应的链表结构如下图所示:
在这里插入图片描述

示例1

输入:
{3,2,0,-4},1
返回值:
true
说明:
第一部分{3,2,0,-4}代表一个链表,第二部分的1表示,-4到位置1,即-4->3存在一个链接,组成传入的head为一个带环的链表,返回true

示例2

输入:
{1},-1
返回值:
false
说明:
第一部分{1}代表一个链表,-1代表无环,组成传入head为一个无环的单链表,返回false  

示例3

输入:
{-1,-7,7,-4,19,6,-9,-5,-2,-5},6
返回值:
true

待填空

/**
 * Definition for singly-linked list.
 * class ListNode {
 *     int val;
 *     ListNode next;
 *     ListNode(int x) {
 *         val = x;
 *         next = null;
 *     }
 * }
 */
public class Solution {
    public boolean hasCycle(ListNode head) {
        
    }
}

思路

我们可以运用数学思想,定义两个不同速度的指针,其中速度较快的指针速度为较慢指针的两倍,这样在相同时间下,如果两个指针相等,则表示相遇,此时两个指针刚好相差一周,由此说明环存在。

题解

    public boolean hasCycle(ListNode head){
        ListNode fast = head;
        ListNode slow = head;
        while (fast != null && fast.next !=null){
            fast = fast.next.next;
            slow = slow.next;

            if(fast == slow){
                return true;
            }
        }
        return false;
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

香鱼嫩虾

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值