机器学习——贝叶斯

贝叶斯算法被称为上帝的算法,
先验信息/先验概率,事先可以得知的。
正向概率:没有官方的定义,举例说明,比如:一支黑箱中有红色和绿色两种颜色的球,不同球数量已知,那么随手摸一个球的概率是可求的,这种问题即为正向概率。
逆向概率:同样是摸球,但事先不知两种球的比例,而是直接从里面摸出一定数量的球,统计取出的球的颜色比例,由此推测两种球的比例。
   逆向概率适合解决样本数量太大,无法一一统计每种样本总体个数的问题。
贝叶斯定理:
如果X情况下H发生的概率不好求,但是H情况下,A发生的概率易得,则可以通过下面的公式获得。
在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述
全概率公式:
在这里插入图片描述在这里插入图片描述
贝叶斯公式:
在这里插入图片描述
朴素贝叶斯(Naive Bayes)是假设特征独立,互不影响。是对贝叶斯的简化
先验概率(prior probability):指的是在观测前我们就已知的结果概率分布 p(y)
后验概率(posterior probability):指的是在观测到X后我们对结果y的估计。其表达叫做条件概率

https://www.zhihu.com/question/27670909/answer/378129817 以上出自知乎问答

极大似然估计:

scikit-learn中的贝叶斯
在这里插入图片描述

转自知乎:(转载)什么是P问题、NP问题和NPC问题 - 雾夜飞鹰的文章 - 知乎
https://zhuanlan.zhihu.com/p/22497908
NP难:
P类问题:如果一个问题可以找到一个能在多项式的时间里解决它的算法,那么这个问题就属于P问题。P是英文单词多项式的第一个字母。哪些问题是P类问题呢?通常NOI和NOIP不会出不属于P类问题的题目。我们常见到的一些信息奥赛的题目都是P问题。道理很简单,一个用穷举换来的非多项式级时间的超时程序不会涵盖任何有价值的算法。
NPC难:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值