http://codevs.cn/problem/1073/
题目描述 Description
若某个家族人员过于庞大,要判断两个是否是亲戚,确实还很不容易,现在给出某个亲戚关系图,求任意给出的两个人是否具有亲戚关系。 规定:x和y是亲戚,y和z是亲戚,那么x和z也是亲戚。如果x,y是亲戚,那么x的亲戚都是y的亲戚,y的亲戚也都是x的亲戚。
输入描述 Input Description
第一行:三个整数n,m,p,(n<=5000,m<=5000,p<=5000),分别表示有n个人,m个亲戚关系,询问p对亲戚关系。 以下m行:每行两个数Mi,Mj,1<=Mi,Mj<=N,表示Ai和Bi具有亲戚关系。 接下来p行:每行两个数Pi,Pj,询问Pi和Pj是否具有亲戚关系。
输出描述 Output Description
P行,每行一个’Yes’或’No’。表示第i个询问的答案为“具有”或“不具有”亲戚关系。
样例输入 Sample Input
6 5 3
1 2
1 5
3 4
5 2
1 3
1 4
2 3
5 6
样例输出 Sample Output
Yes
Yes
No
数据范围及提示 Data Size & Hint
n<=5000,m<=5000,p<=5000
刚学并查集的朋友可以参看这一个入门题。并查集在我看来就是把不同的树节点根据关系分成不同的集合。理论一点的话就是把一棵树转换成连在唯一一个父亲节点上。便于判断这两个节点是否在一起的数据结构模型。
很短的代码
#include <iostream>
#include <cstdio>
using namespace std;
int f[10005];
int find(int i)
{
return f[i]==i?i:find(f[i]);//这个函数的意思是,我们把一开始所有的节点的父亲编号都是他自己。再合并过程中,如a和b把b的父亲节点改为a的父亲节点,这样他们两个就相当于在一个集合。所以我们在查询一个节点的父亲节点看看是不是他本身,不是就要找他父亲节点的父亲节点,直到找到最终的“源点”,也可以称之为着个集合的代表。
}
int main()
{
int n,m,o,a,b;
cin>>n>>m>>o;
for(int i=1;i<=n;i++)
f[i]=i;
for(int i=1;i<=m;i++)
{
scanf("%d%d",&a,&b);
f[find(a)]=find(b);//合并
}
for(int i=1;i<=o;i++)
{
scanf("%d%d",&a,&b);
if(find(a)==find(b))printf("Yes\n");
else printf("No\n");
}
return 0;
}