判断四边形

本文介绍了一种通过输入四个点的坐标,利用向量叉积判断是否构成凸四边形的算法。通过实例演示了如何编程实现,并解释了凸多边形的定义及判断条件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

给出平面上a,b,c,d四个点的坐标,依次连接a-b,b-c,c-d,d-a,请你写程序判断得到的图形是否是凸四边形.

关于输入

输入包含多组数据,每组数据一行,包含8个整数(绝对值都不大于1000),依次为a,b,c,d四个点的坐标.

关于输出

对每组输入输出一行,若得到的图形是凸四边形,输出"yes",否则输出"no"

例子输入

0 0 0 1 1 1 1 0

0 0 1 1 0 1 1 0

0 0 0 1 0 2 1 1

0 0 1 1 0 2 2 1

例子输出

yes
no
no
no

提示

样例2不是简单多边形,样例3是三角形,样例4是凹四边形

所谓的凸多边形是指: 对于多边形上任意一边所在的直线而言,多边形的整体都在直线的同一侧

可以用向量外积(即叉积)判断点在直线的哪一侧

源码

#include<iostream>
using namespace std;
int main(){
 int x[8]={0};
 int y[8]={0};
 double k[4]={0};
 double b[4]={0};
 bool a;
 while (cin>>x[0]>>y[0]){
  a=true;
  for (int i=1;i<4;i++){
   cin>>x[i]>>y[i];
  }
  for (int i=4;i<8;i++){
   x[i]=x[i-4];
   y[i]=y[i-4];
  }
  for (int i=0;i<4;i++){
   if (x[i+1]!=x[i]){
    k[i]=((double)(y[i+1]-y[i]))/(x[i+1]-x[i]);
    b[i]=y[i]-k[i]*x[i];
    if ((k[i]*x[i+2]-y[i+2]+b[i])*(k[i]*x[i+3]-y[i+3]+b[i])<=0){
     a=false;
     break;
    }
   }
   else{
    if ((x[i+2]-x[i])*(x[i+3]-x[i])<=0){
     a=false;
     break;
    }
   } 
  }
  if (a)
   cout<<"yes"<<endl;
  else
   cout<<"no"<<endl;
 }
 return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Grausam

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值