7-24 约分最简分式

分数可以表示为分子/分母的形式。编写一个程序,要求用户输入一个分数,然后将其约分为最简分式。最简分式是指分子和分母不具有可以约分的成分了。如6/12可以被约分为1/2。当分子大于分母时,不需要表达为整数又分数的形式,即11/8还是11/8;而当分子分母相等时,仍然表达为1/1的分数形式。

输入格式:

输入在一行中给出一个分数,分子和分母中间以斜杠/分隔,如:12/34表示34分之12。分子和分母都是正整数(不包含0,如果不清楚正整数的定义的话)。

提示:

  • 对于C语言,在scanf的格式字符串中加入/,让scanf来处理这个斜杠。

  • 对于Python语言,用a,b=map(int, input().split('/'))这样的代码来处理这个斜杠。

输出格式:

在一行中输出这个分数对应的最简分式,格式与输入的相同,即采用分子/分母的形式表示分数。如

5/6表示6分之5。

输入样例:

66/120

输出样例:

11/20
code1:
#include<stdio.h>
int main()
{
    int x,y;
    int be_div,div,temp;
    scanf("%d/%d",&x,&y);
    div=x,be_div=y;
    while(be_div%div!=0){
        temp=div;
        div=be_div%div;
        be_div=temp;
    }
    x=x/div;
    y=y/div;
    printf("%d/%d",x,y);
    return 0;
}

这是通过辗转相除法来求最大公因子的。

code2:
#include<stdio.h>
int main()
{
    int x,y;
    int div_max;
    scanf("%d/%d",&x,&y);
    for(div_max=x;div_max>=1;div_max--){     //遍历
        if(x%div_max==0&&y%div_max==0){   //判断是否为公因子
            x/=div_max;
            y/=div_max;
        }
    }
    printf("%d/%d",x,y);
    return 0;
}

通过遍历的方法求得最大公因子。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值