A - 最短路 HDU-2544

最短路

原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=2544

在每年的校赛里,所有进入决赛的同学都会获得一件很漂亮的t-shirt。但是每当我们的工作人员把上百件的衣服从商店运回到赛场的时候,却是非常累的!所以现在他们想要寻找最短的从商店到赛场的路线,你可以帮助他们吗?


Input
输入包括多组数据。每组数据第一行是两个整数N、M(N<=100,M<=10000),N表示成都的大街上有几个路口,标号为1的路口是商店所在地,标号为N的路口是赛场所在地,M则表示在成都有几条路。N=M=0表示输入结束。接下来M行,每行包括3个整数A,B,C(1<=A,B<=N,1<=C<=1000),表示在路口A与路口B之间有一条路,我们的工作人员需要C分钟的时间走过这条路。
输入保证至少存在1条商店到赛场的路线。
Output
对于每组输入,输出一行,表示工作人员从商店走到赛场的最短时间


Sample Input
2 1
1 2 3
3 3
1 2 5
2 3 5
3 1 2
0 0
Sample Output
3
2


题意:给你一个无向图,让你计算起点到终点的最小代价。

解题思路:很明显,这是一个单源最短路径问题,且都是正权边,所以我们最好用Dijkstra算法来实现,当然,这道题用Floyd算法也不会超时。


Floyd算法AC:

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cmath>
#include<string>
#include<stack>
#include<queue>
#include<cstring>
#include<map>
#include<iterator>
#include<list>
#include<set>
#include<functional>
#include<memory.h>

using namespace std;

int n,m;
const int maxn=105;
const int inf=0x3f3f3f3f;//表示无穷大。
int dis[maxn][maxn];
int a,b,c;
void floyd(){
	for(int k=1;k<=n;k++){
		for(int i=1;i<=n;i++){
			if(dis[i][k]==inf)continue;//跳过不存在的边。
			//优化,利用矩阵的对称性。
			for(int j=1;j<=i;j++){
				dis[i][j]=min(dis[i][j],dis[i][k]+dis[k][j]);
				dis[j][i]=dis[i][j];
			}
		}
	}
}
int main(){
	while(cin>>n>>m&&(n+m)){
		int u,v,w;
		memset(dis,inf,sizeof(dis));
		for(int i=0;i<m;i++){
			cin>>u>>v>>w;
			dis[u][v]=dis[v][u]=w;
		}
		floyd();
		cout<<dis[1][n]<<endl;
	}
	return 0;
}

Dijkstra算法AC:

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cmath>
#include<string>
#include<stack>
#include<queue>
#include<cstring>
#include<map>
#include<iterator>
#include<list>
#include<set>
#include<functional>
#include<memory.h>

using namespace std;

int n,m;
const int maxn=105;
const int inf=0x3f3f3f3f;//表示无穷大。
int graph[maxn][maxn];
int dis[maxn];//起点到终点的最短距离。
int visited[maxn];//判断是否已经访问过。
int a,b,c;
void Dijkstra(){
	dis[1]=0;
	int minn,pos;
	for(int i=1;i<=n;i++){
		minn=inf;
		for(int j=1;j<=n;j++){
			if(!visited[j]&&dis[j]<minn){
				minn=dis[j];
				pos=j;
			}
		}
		visited[pos]=true;
		for(int j=1;j<=n;j++){
			if(!visited[j]&&dis[j]>dis[pos]+graph[pos][j]){
				dis[j]=dis[pos]+graph[pos][j];
			}
		}
	}
}
int main(){
	while(cin>>n>>m&&(n+m)){
		int u,v,w;
		memset(dis,inf,sizeof(dis));
		memset(graph,inf,sizeof(graph));
		memset(visited,false,sizeof(visited));
		for(int i=0;i<m;i++){
			cin>>u>>v>>w;
			graph[u][v]=graph[v][u]=w;
		}
		Dijkstra();
		cout<<dis[n]<<endl;
	}
	return 0;
}

©️2020 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页