机器学习算法
韩晓寒
这个作者很懒,什么都没留下…
展开
-
模型评测ROC、ACU
1 传统模型评测指标混淆表 分类器预测的类别 正(y1) 负(y2) 实际类别 正(y1) 真正例(TP) 伪负例(FN) 负(y2) 伪正例(FP) 真负例(TN) 1.1 准确度:预测真确的个数与样本容量的比值 1.2 正确率(Precision):在预测结果中,该类...原创 2020-07-09 21:18:26 · 1569 阅读 · 0 评论 -
分类算法之NB
以文本分类为例,通过文本分类的过程,学习NB算法的流程及实现方法。极大似然估计下的NB贝叶斯估计下的NB用极大似然估计可能出现所要估计的概率值为0的情况(测试集中的词在样本集中没出现过)。这时会影响到后验概率的计算结果,使分类产生偏差。解决这一问题的方法是采用贝叶斯估计。贝叶斯估计下的的条件概率贝叶斯估计下的的先验概率两种NB的模型封装极大似然估计下的NB模型封装贝叶斯估计下的NB模型封装...原创 2020-06-26 19:36:53 · 620 阅读 · 0 评论 -
决策树算法ID3、C4.5、CART初探
这两天在学习决策树的时候对决策树特征选择搞得有点混乱,在对李航老师的《统计学习方法》进行反复研读后,对此有了新的认识,也理清了思路。以下是我在李航老师的基础上加了一些自己的理解,有不对的地方还请大家批评指正。1 ID3算法中的特征选择2 C4.5算法中的特征选择ID3算法利用信息增益作为选择训练数据集特征选取的依据,存在选择取值较多的特征来对数据集进行分割的偏向。使用 信息增益比来进行特征的选取可以对这一问题进行校正。进而C4.5算法产生了。3 CART算法中的特征选择CART算法中,决原创 2020-06-24 09:54:27 · 327 阅读 · 0 评论