Zoj 3537 区间DP

本文探讨了在解决复杂几何问题时如何将动态规划与凸包算法结合使用,通过实例展示了这一方法在实际问题中的应用。文章首先解释了状态转移方程的概念,并通过代码实现展示了如何在动态规划框架内求解凸包问题。此外,文章还提供了一个具体问题的解决方案,包括如何计算点之间的距离、如何进行排序和筛选以及如何优化动态规划过程。
摘要由CSDN通过智能技术生成

转自:http://blog.csdn.net/woshi250hua/article/details/7824433

状态转移方程弄懂了,但是因为没有做计算几何,所以凸包的求解看不懂。。。。以后看。。。。先刷DP

AC代码如下:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;

#define MAX 0x3f3f3f3f

int N, P;
typedef struct{
	int x, y;
}Node;
Node point[1000], newpoint[1000];
int cost[1000][1000];
int dp[1000][1000];

inline int abs( int x ){
	return x < 0 ? -x : x;
}

int xmult( Node p1, Node p2, Node p0 ){
	return ( p1.x - p0.x ) * ( p2.y - p0.y ) - ( p2.x - p0.x ) * ( p1.y - p0.y );
}

bool cmp( const Node &a, const Node &b ){
	if( a.y == b.y ){
		return a.x < b.x;
	}
	return a.y < b.y;
}

int graham( Node *p, int n ){
	int i;
	sort( p, p + n, cmp );
	newpoint[0] = point[0];
	newpoint[1] = point[1];
	
	int top = 1;
	for( i = 0; i < n; i++ ){
		while( top && xmult( newpoint[top], p[i], newpoint[top-1] ) >= 0 ){
			top--;
		}
		newpoint[++top] = p[i];
	}
	int mid = top;
	for( i = n - 2; i >= 0; i-- ){
		while( top > mid && xmult( newpoint[top], p[i], newpoint[top-1] ) >= 0 ){
			top--;
		}
		newpoint[++top] = p[i];
	}
	return top;
}

int Count( Node a, Node b ){
	return ( abs( a.x + b.x ) * abs( a.y + b.y ) ) % P;
}

int main(){

	while( scanf( "%d%d", &N, &P ) != EOF ){
		for( int i = 0; i < N; i++ ){
			cin >> point[i].x >> point[i].y;
		}

		int tot =  graham( point, N );
		if( tot < N ){
			cout << "I can't cut." << endl;
		}else{
			
			memset( cost, 0, sizeof( cost ) );
			for( int i = 0; i < N; i++ ){
				for( int j = i + 2; j < N; j++ ){
					cost[i][j] = cost[j][i] = Count( newpoint[i], newpoint[j] );
				}
			}

			for( int i = 0; i < N; i++ ){
				for( int j = 0; j < N; j++ ){
					dp[i][j] = MAX;
				}
				dp[i][(i+1)%N] = 0;
			}

			for( int i = N - 3; i >= 0; i-- ){
				for( int j = i + 2; j < N; j++ ){
					for( int k = i + 1; k < j; k++ ){
						dp[i][j] = min( dp[i][j], dp[i][k] + dp[k][j] + cost[i][k] + cost[k][j] );
					}
				}
			}

			cout << dp[0][N-1] << endl;
		}
	}
	return 0;
}


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值