dp【i】【j】表示第i天之后拥有j个股票的最大利润
那么dp【i】【j】 = max{ dp【i-1】【j】, dp【i-W-1】【k】 - ( j - k ) * ap【i】, dp【i-W-1】【k】 - ( k - j ) * bp【i】 }
这里直接从i-w-1转化而来,并没有考虑之前的,原因是之前的会先转换到i-w-1
然后这里可以用单调队列来优化 k 的选取,本来k的选取的复杂度是O(n),但是优化之后可以降为O(1)
怎么优化呢?
注意这里的 dp【i-W-1】k】 - ( j - k ) * ap【i】 与 j有关
所以先变形为 dp【i-w-1】【k】 +k * ap【i】 - j * ap【i】
单调队列里面保存的是最大的 dp【i-w-1】【k】 +k * ap【i】
然后就是标准的单调队列优化了
然后还要注意下初始话的问题
AC代码如下:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define MAX 0x3f3f3f3f
int ap[2200], bp[2200];
int anum[2200], bnum[2200];
int N, Maxp, W;
int q[2200], pos[2200], head, tail;
int dp[2200][2200];
int main(){
int T;
cin >> T;
while( T-- ){
cin >> N >> Maxp >> W;
for( int i = 1; i <= N; i++ ){
cin >> ap[i] >> bp[i] >> anum[i] >> bnum[i];
}
for( int i = 0; i <= N; i++ ){
for( int j = 0; j <= Maxp; j++ ){
dp[i][j] = -MAX;
}
}
for( int i = 1; i <= W + 1; i++ ){
for( int j = 0; j <= anum[i] && j <= Maxp; j++ ){
dp[i][j] = -j * ap[i];
}
}
int r;
for( int i = 1; i <= N; i++ ){
for( int j = 0; j <= Maxp; j++ ){
dp[i][j] = max( dp[i-1][j], dp[i][j] );
}
if( i <= W + 1 ) continue;
r = i - W - 1;
head = 0;
tail = -1;
for( int j = 0; j <= Maxp; j++ ){
while( head <= tail && dp[r][j] + j * ap[i] > q[tail] ) tail--;
tail++;
q[tail] = dp[r][j] + j * ap[i];
pos[tail] = j;
while( head <= tail && j - pos[head] > anum[i] ) head++;
dp[i][j] = max( dp[i][j], q[head] - j * ap[i] );
}
head = 0;
tail = -1;
for( int j = Maxp; j >= 0; j-- ){
while( head <= tail && dp[r][j] + j * bp[i] > q[tail] ) tail--;
tail++;
q[tail] = dp[r][j] + j * bp[i];
pos[tail] = j;
while( head <= tail && pos[head] - j > bnum[i] ) head++;
dp[i][j] = max( dp[i][j], q[head] - j * bp[i] );
}
}
int ans = -MAX;
for( int j = 0; j <= Maxp; j++ ){
ans = max( ans, dp[N][j] );
}
cout << ans << endl;
}
return 0;
}