hdu 3507 斜率优化DP

状态转移方程很容易想到:

dp[i] = dp[j] + (sum[i] - sum[j] )^2 + M;( 0 <= j < i )

变形得

dp[i] = -2sum[i] * sum[j] + dp[j] + sum[j] ^2 + sum[i] ^2 + M;

令 a = 2sum[i] , x =  sum[j] , y = dp[j] + sum[j] ^2 

实际上要求使 G = -a * x + y 最小的点

变形 y = a * x + G

意思就是求使G最大的点

这时我们可以维护一个下凸点的栈,因为如果决策中存在上凸点,该点一定不是最优的

然后每次从这个栈中找决策点,又因为这个栈是下凸的,所以决策时单调的

AC代码如下:

#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
using namespace std;

int N, M;
long long sum[550000];
long long dp[550000];
int pos[550000], s, e;

double calc( int j, int i ){
    return dp[j] + sum[j] * sum[j] - 2 * sum[i] * sum[j];
}

int main(){

    while( scanf( "%d%d", &N, &M ) != EOF ){
        sum[0] = 0;
        dp[0] = 0;
        for( int i = 1; i <= N; i++ ){
            scanf( "%lld", &sum[i] );
            sum[i] += sum[i-1];
        }
        s = 0; e = -1;
        pos[++e] = 0;
        for( int i = 1; i <= N; i++ ){
            while( s < e && calc( pos[s], i ) >= calc( pos[s+1], i ) )  s++;
            dp[i] = calc( pos[s], i ) + sum[i] * sum[i] + M;
            while( s < e ){
                //这里不要直接用double来算斜率,因为精度不够,转换成积
                long long k1 = ( dp[i] + sum[i] * sum[i] - dp[pos[e]] - sum[pos[e]] * sum[pos[e]] ) * ( sum[pos[e]] - sum[pos[e-1]] );
                long long k2 = ( dp[pos[e]] + sum[pos[e]] * sum[pos[e]] - dp[pos[e-1]] - sum[pos[e-1]] * sum[pos[e-1]] ) * ( sum[i] - sum[pos[e]] );
                if( k2 >= k1 ){
                    e--;
                }else{
                    break;
                }
            }
            pos[++e] = i;
        }
        printf( "%lld\n", dp[N] );
    }

    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值