dp[i][j]表示第i步之后又j个位置与最终字符不同
那么转移就是在j中选k个改变 在N-j中选M - k个改变
向上递推
注意向上递推和想写递推转移的方程有不一样的地方
AC代码如下:
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
using namespace std;
const long long MOD = 1000000009;
long long C[110][110];
int N, K, M;
char s[2][110];
long long dp[2][110];
void init(){
C[0][0] = 1;
for( int i = 1; i <= 100; i++ ){
C[i][i] = C[i][0] = 1;
for( int j = 1; j < i; j++ ){
C[i][j] = ( C[i-1][j] + C[i-1][j-1] ) % MOD;
}
}
}
int main(){
init();
while( scanf( "%d%d%d", &N, &K, &M ) != EOF ){
scanf( "%s%s", s[0], s[1] );
int temp = 0;
for( int i = 0; i < N; i++ ){
if( s[0][i] != s[1][i] ){
temp++;
}
}
int now, pre;
now = 0;
pre = 1;
memset( dp, 0, sizeof( dp ) );
dp[now][temp] = 1;
for( int i = 1; i <= K; i++ ){
swap( now, pre );
memset( dp[now], 0, sizeof( dp[now] ) );
for( int j = 0; j <= N; j++ ){
for( int k = max( 0, M - N + j ); k <= j && k <= M; k++ ){
dp[now][M+j-2*k] = ( dp[now][M+j-2*k] + dp[pre][j] % MOD * C[j][k] % MOD * C[N-j][M-k] % MOD ) % MOD;
}
}
}
printf( "%lld\n", dp[now][0] );
}
return 0;
}