hdu 3117 矩阵快速幂

求前四位的时候直接用公式来求

求和四位的时候利用矩阵快速幂来求,每次对10000取余即可

AC代码如下:

#include <iostream>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
using namespace std;

const int MAX_N = 3;
const int MOD = 10000;

int fib[40];
int N, M;

int get_f4( int n ){
    double t1 = ( 1 + sqrt( 5.0 ) ) / 2;
    double t2 = -0.5 * log10(5.0) + (double)n * log10( t1 );
    double t3 = t2 - (int)t2;
    int ans = pow( 10.0, t3 ) * 1000.0;
    return ans;
}

void multipy( int a[MAX_N][MAX_N], int b[MAX_N][MAX_N], int c[MAX_N][MAX_N] ){
    for( int i = 1; i <= 2; i++ ){
        for( int j = 1; j <= 2; j++ ){
            c[i][j] = 0;
            for( int k = 1; k <= 2; k++ ){
                c[i][j] = ( c[i][j] + a[i][k] * b[k][j] ) % MOD;
            }
        }
    }
}

void get_matrix_pow( int a[MAX_N][MAX_N], int n ){
    int ans[MAX_N][MAX_N] = {0};
    int temp[MAX_N][MAX_N];

    for( int i = 1; i <= 2; i++ )   ans[i][i] = 1;

    while( n ){
        if( n % 2 == 1 ){
            multipy( ans, a, temp );
            memcpy( ans, temp, sizeof( int ) * MAX_N * MAX_N );
        }
        multipy( a, a, temp );
        memcpy( a, temp, sizeof( int ) * MAX_N * MAX_N );
        n /= 2;
    }
    memcpy( a, ans, sizeof( int ) * MAX_N * MAX_N );
}

int main(){
    fib[0] = 0;fib[1] = 1;
    for( int i = 2; i < 40; i++ ){
        fib[i] = fib[i-1] + fib[i-2];
    }

    while( scanf( "%d", &M ) != EOF ){
        if( M < 40 ){
            printf( "%d\n", fib[M] );
        }else{
            int ans_a = get_f4( M );
            int a[MAX_N][MAX_N];
            a[1][1] = 1;a[1][2] = 1;
            a[2][1] = 1;a[2][2] = 0;
            get_matrix_pow( a, M );
            int ans_b = a[2][1];
            printf( "%d...%04d\n", ans_a, ans_b );
        }
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值