激活函数

sigmoid s i g m o i d

这里写图片描述
sigmoid非线性函数的数学公式是: σ(x)=11+ex σ ( x ) = 1 1 + e − x .
缺点:

  • Sigmoid函数饱和使梯度消失。当神经元的激活在接近0或1处时会饱和:在这些区域,梯度几乎为0。
  • Sigmoid函数的输出不是零中心的。

tanh t a n h

这里写图片描述
tanh t a n h 非线性函数 tanh(x)=2σ(2x)1 t a n h ( x ) = 2 σ ( 2 x ) − 1 。它将实数值压缩到[-1,1]之间。和sigmoid神经元一样,它也存在饱和问题,但是和sigmoid神经元不同的是,它的输出是零中心的。因此,在实际操作中,tanh非线性函数比sigmoid非线性函数更受欢迎。

ReLU R e L U

这里写图片描述
ReLU(x)=max(0,x) R e L U ( x ) = m a x ( 0 , x )
优点:

  • 相较于sigmoid和tanh函数,ReLU对于随机梯度下降的收敛有巨大的加速作用( Krizhevsky 等的论文指出有6倍之多,如下图所示)。据称这是由它的线性,非饱和的公式导致的。这里写图片描述
  • sigmoid和tanh神经元含有指数运算等耗费计算资源的操作,而ReLU可以简单地通过对一个矩阵进行阈值计算得到。

缺点:

  • 在训练的时候,ReLU单元比较脆弱并且可能“死掉”。举例来说,当一个很大的梯度流过ReLU的神经元的时候,可能会导致梯度更新到一种特别的状态,在这种状态下神经元将无法被其他任何数据点再次激活。如果这种情况发生,那么从此所以流过这个神经元的梯度将都变成0。也就是说,这个ReLU单元在训练中将不可逆转的死亡,因为这导致了数据多样化的丢失。例如,如果学习率设置得太高,可能会发现网络中40%的神经元都会死掉(在整个训练集中这些神经元都不会被激活)。通过合理设置学习率,这种情况的发生概率会降低。

Leaky ReLU L e a k y   R e L U

Leaky ReLU(x)=max(0.01x,x) L e a k y   R e L U ( x ) = m a x ( 0.01 x , x ) ,该激活函数是为了解决“ReLU死亡”问题。
这里写图片描述

Maxout M a x o u t

Maxout(x)=max(wT1x+b1,wT2x+b2) M a x o u t ( x ) = m a x ( w 1 T x + b 1 , w 2 T x + b 2 )
Maxout M a x o u t 是对 ReLU R e L U Leaky ReLU L e a k y   R e L U 的一般化归纳。这样 Maxout M a x o u t 神经元就拥有 ReLU R e L U 单元的所有优点(线性操作和不饱和),而没有它的缺点(死亡的 ReLU R e L U 单元)。然而和 ReLU R e L U 对比,它每个神经元的参数数量增加了一倍,这就导致整体参数的数量激增。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值