BZOJ3745 / LOJ2809 Norma题解(分治)

题目:BZOJ3745/LOJ2809.
题目大意:给定一个长度为 n n n的序列 a i a_i ai,求:
∑ l = 1 n ∑ r = l n ( r − l + 1 ) max ⁡ i = l r { a i } min ⁡ i = l r { a i }    ( m o d    1 0 9 ) \sum_{l=1}^{n}\sum_{r=l}^{n}(r-l+1)\max_{i=l}^{r}\{a_i\}\min_{i=l}^{r}\{a_i\}\,\,(mod\,\,10^9) l=1nr=ln(rl+1)i=lmaxr{ai}i=lminr{ai}(mod109)

1 ≤ n ≤ 5 ∗ 1 0 5 , 1 ≤ a i ≤ 1 0 8 1\leq n\leq 5*10^5,1\leq a_i\leq 10^8 1n5105,1ai108,答案对 1 0 9 10^9 109取模.

线段树+单调栈做法.

首先,看到这种球所有子区间的 m i n min min m a x max max运算一下的套路题,马上就能知道它是分治 / / /线段树+单调栈.

考虑分治的做法,每次分治区间 [ l , r ] [l,r] [l,r]的时候求跨过中点 m i d mid mid的区间贡献和.

考虑枚举左端点 i = m i d → l i=mid\rightarrow l i=midl,并同时求出此时 [ i , m i d ] [i,mid] [i,mid]中的最大值 m x mx mx和最小值 m n mn mn,同时求出在对应在 [ m i d + 1 , r ] [mid+1,r] [mid+1,r]中第一个大于 m x mx mx的位置 p m x pmx pmx和第一个小于 m n mn mn的位置 p m n pmn pmn,先假设 p m x &lt; p m n pmx&lt;pmn pmx<pmn,此时右端点在 [ m i d + 1 , r ] [mid+1,r] [mid+1,r]中的位置情况分为三个不同的区间 [ m i d + 1 , p m x ) , [ p m x , p m n ) , [ p m n , r ] [mid+1,pmx),[pmx,pmn),[pmn,r] [mid+1,pmx),[pmx,pmn),[pmn,r].

考虑第一个区间中的右端点 r j r_j rj,它的贡献必然是 m x ∗ m n ∗ ( r j − i + 1 ) mx*mn*(r_j-i+1) mxmn(rji+1),把 r j − i + 1 r_j-i+1 rji+1拆分成 ( r j − m i d ) + ( m i d − i + 1 ) (r_j-mid)+(mid-i+1) (rjmid)+(midi+1)两部分计算即可.

第二个区间中的右端点 r j r_j rj,它的贡献是 max ⁡ k = m i d + 1 r j { a k } ∗ m n ∗ ( r j − i + 1 ) \max_{k=mid+1}^{r_j}\{a_k\}*mn*(r_j-i+1) maxk=mid+1rj{ak}mn(rji+1),同理把区间长度拆成两部分计算,并用前缀和预处理一些信息即可.

第三个区间中的右端点 r j r_j rj也差不多,贡献为 max ⁡ k = m i d + 1 r j { a k } ∗ min ⁡ k = m i d + 1 r j { a k } ∗ ( r j − i + 1 ) \max_{k=mid+1}^{r_j}\{a_k\}*\min_{k=mid+1}^{r_j}\{a_k\}*(r_j-i+1) maxk=mid+1rj{ak}mink=mid+1rj{ak}(rji+1),类似处理即可.

时间复杂度 O ( n log ⁡ n ) O(n\log n) O(nlogn).

代码如下:

#include<bits/stdc++.h>
using namespace std;

#define Abigail inline void
typedef long long LL;

const int N=500000,mod=1000000000;

int add(int a,int b){return a+b>=mod?a+b-mod:a+b;}
int sub(int a,int b){return a-b<0?a-b+mod:a-b;}
int mul(int a,int b){return (LL)a*b%mod;}
void sadd(int &a,int b){a=add(a,b);}
void ssub(int &a,int b){a=sub(a,b);}
void smul(int &a,int b){a=mul(a,b);}

int n,a[N+9];
int sp[N+9],smx[N+9],smn[N+9],spmx[N+9],spmn[N+9],smxn[N+9],spmxn[N+9];
int ans;

void Divide(int L,int R){
  if (L==R) {sadd(ans,mul(a[L],a[L]));return;}
  int mid=L+R>>1;
  Divide(L,mid);
  Divide(mid+1,R);
  sp[mid]=smx[mid]=smn[mid]=spmx[mid]=spmn[mid]=smxn[mid]=spmxn[mid]=0;
  int mx=a[mid+1],mn=a[mid+1];
  for (int i=mid+1;i<=R;++i){
  	mx=max(mx,a[i]);mn=min(mn,a[i]);
  	sp[i]=add(sp[i-1],i-mid);
  	smx[i]=add(smx[i-1],mx);smn[i]=add(smn[i-1],mn);
  	spmx[i]=add(spmx[i-1],mul(mx,i-mid));
  	spmn[i]=add(spmn[i-1],mul(mn,i-mid));
  	smxn[i]=add(smxn[i-1],mul(mx,mn));
  	spmxn[i]=add(spmxn[i-1],mul(mul(mx,mn),i-mid));
  }
  mx=a[mid];mn=a[mid];
  int pmx=mid+1,pmn=mid+1;
  for (int i=mid;i>=L;--i){
    mx=max(mx,a[i]);mn=min(mn,a[i]);
    for (;pmx<=R&&a[pmx]<=mx;++pmx);
    for (;pmn<=R&&a[pmn]>=mn;++pmn);
    sadd(ans,mul(add(mul(min(pmx,pmn)-mid-1,mid-i+1),sp[min(pmx,pmn)-1]),mul(mx,mn)));
    if (pmx<pmn) sadd(ans,mul(mn,add(sub(spmx[pmn-1],spmx[pmx-1]),
	             mul(sub(smx[pmn-1],smx[pmx-1]),mid-i+1))));
    else sadd(ans,mul(mx,add(sub(spmn[pmx-1],spmn[pmn-1]),mul(sub(smn[pmx-1],smn[pmn-1]),mid-i+1))));
    sadd(ans,add(sub(spmxn[R],spmxn[max(pmx,pmn)-1]),mul(sub(smxn[R],smxn[max(pmx,pmn)-1]),mid-i+1)));
  }
}

Abigail into(){
  scanf("%d",&n);
  for (int i=1;i<=n;++i)
    scanf("%d",&a[i]);
}

Abigail work(){
  Divide(1,n);
}

Abigail outo(){
  printf("%d\n",ans);
}

int main(){
  into();
  work();
  outo();
  return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值