BZOJ3012 First!题解(Trie树+拓扑排序)

题目:BZOJ3012.
题目大意:给定 n n n个字符串 S i S_i Si,求在每一个串是否能在一个字典顺序下字典序最小.
1 ≤ n ≤ 3 ∗ 1 0 4 , 1 ≤ ∑ ∣ S i ∣ ≤ 3 ∗ 1 0 5 1\leq n\leq3*10^4,1\leq \sum |S_i|\leq 3*10^5 1n3104,1Si3105.

这道题一看到要拓扑排序就懵了,想了一下如何建图也没有想出来,这种建图的套路题做的少啊…

首先我们先确定一个性质,就是当一个串有一个前缀串也在给定串中时,这个串肯定不可能字典序最小了.

于是我们就发现这道题要查一个串是否有前缀也在给定串中,就可以很自然的想到Trie树.

想到Trie树后,我们考虑一个串字典序最小时,优先让前面的最小,也就是说我们可以从Trie的根开始往下,与当前节点相连的每一层边中,字典序最小的串所对应的边必须是最小的.

这时我们就想到,可以建一张图以每个字符作为一个节点,当一个字符 x x x必须大于另一个字符 y y y时就连一条从 x x x y y y的有向边,那是否矛盾的问题就变成了判环问题,于是我们就可以愉快的写拓扑排序判环了.

时间复杂度 O ( 26 m + 2 6 2 n ) O(26m+26^2n) O(26m+262n).

所以代码如下:

#include<bits/stdc++.h>
  using namespace std;

#define Abigail inline void
typedef long long LL;
#define m(a) memset(a,0,sizeof(a))

const int N=30000,M=300000,C=26;

struct Trie{
  int s[C],cnt;
}tr[M+9];
int cn;

void Build(){tr[cn=1]=Trie();}

void Insert(char *c,int len){
  int x=1;
  for (int i=1;i<=len;++i)
    if (tr[x].s[c[i]-'a']) x=tr[x].s[c[i]-'a'];
    else {
      tr[x].s[c[i]-'a']=++cn;
      tr[cn]=Trie();
      x=cn;
    }
  ++tr[x].cnt;
}

int e[C+9][C+9],deg[C+9];
queue<int>q;

bool topsort(){
  for (int i=0;i<C;++i)
    if (!deg[i]) q.push(i);
  int t;
  while (!q.empty()){
  	t=q.front();q.pop();
  	for (int i=0;i<C;++i)
  	  if (e[t][i]){
  	  	deg[i]-=e[t][i];
  	  	if (!deg[i]) q.push(i);
  	  }
  }
  for (int i=0;i<C;++i)
    if (deg[i]) return false;
  return true;
}

bool Check(char *c,int len){
  int x=1;
  for (int i=0;i<C;++i){
    for (int j=0;j<C;++j)
      e[i][j]=0;
    deg[i]=0;
  }
  for (int i=1;i<=len;++i)
    if (tr[x].s[c[i]-'a']){
      if (tr[x].cnt) return false;
      for (int j=0;j<C;++j)
        if (c[i]-'a'^j&&tr[x].s[j]) ++e[c[i]-'a'][j],++deg[j];
      x=tr[x].s[c[i]-'a'];
    }else break;
  return topsort();
}

vector<char> c[N+9],ans[N+9];
char tmp[M+9];
int len[N+9],n,m;
int la[N+9],k;

Abigail into(){
  scanf("%d",&n);
  Build();
  for (int i=1;i<=n;++i){
  	scanf("%s",tmp+1);
  	len[i]=strlen(tmp+1);
  	Insert(tmp,len[i]);
  	c[i].push_back(0);
  	for (int j=1;j<=len[i];++j)
  	  c[i].push_back(tmp[j]);
  }
}

Abigail work(){
  for (int i=1;i<=n;++i){
  	for (int j=1;j<=len[i];++j)
  	  tmp[j]=c[i][j];
  	if (!Check(tmp,len[i])) continue;
  	la[++k]=len[i];
  	ans[k].push_back(0);
  	for (int j=1;j<=len[i];++j)
  	  ans[k].push_back(tmp[j]);
  }
}

Abigail outo(){
  printf("%d\n",k);
  for (int i=1;i<=k;++i){
  	for (int j=1;j<=la[i];++j)
  	  putchar(ans[i][j]);
	puts("");
  }
}

int main(){
  into();
  work();
  outo();
  return 0;
}
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用形dp来解决这个问,具体来说,我们可以将这个图看作是一棵,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值