主席树(可持久化线段树)入门详解

一.问题引入.

当我们遇到要求快速查询区间的问题时,通常用线段树、平衡树等数据结构维护这类问题.但是使用这些数据结构的前提是要求区间信息可以快速合并(例如 O ( 1 ) O(1) O(1) O ( log ⁡ n ) O(\log n) O(logn)合并),还有很多问题是不可以这样做的,例如区间第k小的问题.

区间第k小问题可以使用很多数据结构来解决,例如划分树、归并树、分块、树套树等数据结构来解决,然而这些数据结构一次查询的时间复杂度大多劣于 O ( log ⁡ n ) O(\log n) O(logn).

就当这些数据结构都对这类问题显得十分无力的时候,可持久化这种数据结构上的技巧横空出世,而主席树(可持久化线段树)就是其中的一种经典应用.


二.权值线段树.

在认识主席树之前,我们先来看一种特殊的线段树——权值线段树,这种线段树的维护的是序列的数值范围内每一个值的出现情况.

我们不考虑时空复杂度,尝试利用权值线段树来维护区间第 k k k小问题.

首先建立 n n n棵结构相同线段树,每棵线段树维护区间 [ 1 , n ] [1,n] [1,n]中出现的权值信息.那么当我们要查询区间 [ l , r ] [l,r] [l,r]的第 k k k小数时,就可以同时从维护 [ 1 , l − 1 ] [1,l-1] [1,l1] [ 1 , r ] [1,r] [1,r]的线段树的根节点出发往下走.设 t r [ m ] [ i ] tr[m][i] tr[m][i]表示维护 [ 1 , m ] [1,m] [1,m]的线段树的第 i i i个节点,那么若 t r [ r ] [ i ] tr[r][i] tr[r][i]的左儿子所包含的权值数量减去 t r [ l − 1 ] [ i ] tr[l-1][i] tr[l1][i]左儿子所包含的权值数量小于 k k k则往右儿子走(注意让 k k k减掉权值数量),否则往左儿子走.

这个时候我们会发现查询一次的时间复杂度为 O ( log ⁡ n ) O(\log n) O(logn),但是空间复杂度和建树的时间复杂度均为 O ( n 2 ) O(n^2) O(n2)(离散化后),于是我们的算法就要考虑如何优化这一复杂度.


三.可持久化的引入.

我们设原来的权值序列为 2 , 1 , 3 , 4 2,1,3,4 2,1,3,4,那么原来的 4 4 4棵线段树大概是这样的:
在这里插入图片描述
其中橙色的节点表示与上一棵线段树之间的差异.

我们考虑相邻的两棵线段树之间的关系,发现两棵线段树之间的差异只有树上的一条长度为 O ( log ⁡ n ) O(\log n) O(logn)的链!

这是否可以启发我们可以每次只存储发生改变的节点,其它节点直接调用上一棵的?

考虑这样子存储原来的 n n n棵线段树:
在这里插入图片描述
图有点丑不要介意QAQ.

我们发现这正好对应了我们上面的只存修改节点的思想,看起来这个想法非常可行,显然时空复杂度均为 O ( n log ⁡ n ) O(n\log n) O(nlogn).

事实上,这是一种被称作“可持久化”的技巧,这种技巧被广泛应用于数据结构的维护上,我们上面维护的线段树就是可持久化线段树,也被称为主席树.

类比可持久化线段树,我们还可以维护可持久化Trie、可持久化并查集、可持久化平衡树等数据结构,除了可持久化树状数据结构外,也有可持久化栈、可持久化块状链表等数据结构.


四.可持久化线段树的实现.

说了那么多,我们该如何实现一棵可持久化线段树呢?

首先我们可以仿照动态开点线段树,初始第一棵树直接利用 0 0 0节点的自我迭代来实现,也就是说我们不需要建树.

之后考虑如何往后增加一棵树 k k k.其实很简单,只需要顺着第 k − 1 k-1 k1棵树往下,新建一条链即可,代码如下:

void Add_tree(int x,int l,int r,int hk,int &k){
  tr[k=++cn]=tr[hk];
  if (l==r) {++tr[k].sum;return;}
  int mid=l+r>>1;
  if (x<=mid) Add_tree(x,l,mid,tr[hk].s[0],tr[k].s[0]);
  else Add_tree(x,mid+1,r,tr[hk].s[1],tr[k].s[1]);
  Pushup(k);
}
//主程序中
Add_tree(a[i],1,n,rot[i-1],rot[i]);

查询 [ l , r ] [l,r] [l,r]就从第 l − 1 l-1 l1和第 r r r往下走就好了,代码如下:

int Query(int k,int l,int r,int L,int R){
  if (l==r) return l;
  int sum=tr[tr[R].s[0]].sum-tr[tr[L].s[0]].sum,mid=l+r>>1;
  if (sum>=k) return Query(k,l,mid,tr[L].s[0],tr[R].s[0]);
  else return Query(k-sum,mid+1,r,tr[L].s[1],tr[R].s[1]);
}



五.例题与代码.

题目:luogu3834.

注意,这题由于数的范围太大权值线段树开不下,需要离散化.

代码如下:

#include<bits/stdc++.h>
  using namespace std;
 
#define Abigail inline void
typedef long long LL;

const int N=200000,C=30; 

int n,m,a[N+9],ord[N+9];

int Lower(int *a,int n,int x){
  int l=1,r=n,mid=l+r>>1;
  for (;l<r;mid=l+r>>1)
    x>a[mid]?l=mid+1:r=mid;
  return l;
}

struct tree{
  int s[2],sum;
}tr[N*C+9];
int cn,rot[N+9];

void Pushup(int k){tr[k].sum=tr[tr[k].s[0]].sum+tr[tr[k].s[1]].sum;}

void Add_tree(int x,int l,int r,int hk,int &k){
  tr[k=++cn]=tr[hk];
  if (l==r) {++tr[k].sum;return;}
  int mid=l+r>>1;
  if (x<=mid) Add_tree(x,l,mid,tr[hk].s[0],tr[k].s[0]);
  else Add_tree(x,mid+1,r,tr[hk].s[1],tr[k].s[1]);
  Pushup(k);
}

int Query(int k,int l,int r,int L,int R){
  if (l==r) return l;
  int sum=tr[tr[R].s[0]].sum-tr[tr[L].s[0]].sum,mid=l+r>>1;
  if (sum>=k) return Query(k,l,mid,tr[L].s[0],tr[R].s[0]);
  else return Query(k-sum,mid+1,r,tr[L].s[1],tr[R].s[1]);
}

Abigail into(){
  scanf("%d%d",&n,&m);
  for (int i=1;i<=n;++i){ 
    scanf("%d",&a[i]);
    ord[i]=a[i];
  }
}

Abigail work(){
  sort(ord+1,ord+1+n);
  for (int i=1;i<=n;++i)
    a[i]=Lower(ord,n,a[i]);
  for (int i=1;i<=n;++i)
    Add_tree(a[i],1,n,rot[i-1],rot[i]);
}

Abigail getans(){
  int l,r,k;
  while (m--){
  	scanf("%d%d%d",&l,&r,&k);
  	printf("%d\n",ord[Query(k,1,n,rot[l-1],rot[r])]);
  }
}

int main(){
  into();
  work();
  getans();
  return 0;
}
  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值